-
本文先应用分子动力学模拟BaTiO3体系在初级击出原子(primary knock-on atom, PKA)轰击下缺陷产生和复合的动力学过程, 模拟结果表明:PKA的方向和能量对缺陷数目有重要影响, 并计算了Ba, O和Ti原子的平均位移阈能分别为69 eV, 51 eV和123 eV, 远大于SRIM程序默认的位移阈能25 eV. 然后应用蒙特卡罗软件包SRIM, 模拟质子在BaTiO3薄膜中的能量损失过程, 比较位移阈能对模拟结果的影响, 分析质子能量和入射角度对空位数量以及分布的影响. 结果表明空位数量随着质子能量增加而增加, 增加的速率随能量的增加是降低的;当入射角度大于60°, 空位数量随入射角增大而明显减少.BaTiO3 is a kind of perovskite ferroelectric which has the advantages of ferroelectric property, piezoelectric property and radiation resistance. BaTiO3 thin films and devices have important applications in strong irradiation environment. The structure damage, especially the oxygen vacancy has a crucial influence on the response of ferroelectric under radiation. Molecular dynamics is used to simulate the formation process and the recovery process of defects in BaTiO3 under the impact of primary knock-on atom (PKA). The results show that the initial motion direction and energy of PKA have significant effects on the number of defects, and the averaged threshold displacement energies of Ba, O and Ti atom are 69 eV, 51 eV and 123 eV respectively. The calculated displacement energy is obviously larger than default value (25 eV) in SRIM code. Furthermore the SRIM code is used to simulate the proton irradiation damage in BaTiO3 thin film. The results show that the number of vacancy increases with the increase of proton energy, but the increase rate decreases, and the number of vacancy decreases obviously with the increase of incidence angle when it is more than 60°.
-
Keywords:
- molecular dynamics /
- ferroelectric thin film /
- irradiation damage
[1] Scott J F, Araujo C A, Brett H, McMillan L D, Shawabkeh A 1989 J. Appl. Phys. 66 1444
[2] Colc Y M, Musseau O, Leray J L 1994 IEEE Trans. Nucl. Sci. 41 495
[3] Scott J F 2004 Ferroelectric Memories(Beijing: Tsinghua Univerisy Press) (In Chinese) [朱劲松等译 2004 铁电存储器 (北京:清华大学出版社)]
[4] Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734
[5] Stanishevsky A, Nagaraj B,Melngailis J, Ramesh R, Khriachtchev L, McDaniel E 2002 J. Appl. Phys. 92 3275
[6] Li Y S, Ma Y, Zhou Y C 2009 Appl. Phys. Lett. 94 042903
[7] Cao H X, Zhang N 2008 Acta Phys. Sin. 57 6582 (in Chinese) [曹鸿霞, 张宁 2008 57 6582]
[8] Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 60 046105]
[9] Xiao S Q, Xie G F 2010 Acta Phys. Sin. 59 4808 (in Chinese) [肖松青, 谢国锋 2010 59 4808]
[10] Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids. (Pergamon, New York)
[11] Thomas B S, Marks N A, Begg B D 2007 Nucl. Instr. and Meth. B 254 211
[12] Smith K L, Zaluzec N J 2005 J. Nucl. Mater. 336 261
[13] Smith K L, Colella M, Cooper R, Vance E R 2003 J. Nucl. Mater. 321 19
-
[1] Scott J F, Araujo C A, Brett H, McMillan L D, Shawabkeh A 1989 J. Appl. Phys. 66 1444
[2] Colc Y M, Musseau O, Leray J L 1994 IEEE Trans. Nucl. Sci. 41 495
[3] Scott J F 2004 Ferroelectric Memories(Beijing: Tsinghua Univerisy Press) (In Chinese) [朱劲松等译 2004 铁电存储器 (北京:清华大学出版社)]
[4] Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734
[5] Stanishevsky A, Nagaraj B,Melngailis J, Ramesh R, Khriachtchev L, McDaniel E 2002 J. Appl. Phys. 92 3275
[6] Li Y S, Ma Y, Zhou Y C 2009 Appl. Phys. Lett. 94 042903
[7] Cao H X, Zhang N 2008 Acta Phys. Sin. 57 6582 (in Chinese) [曹鸿霞, 张宁 2008 57 6582]
[8] Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 60 046105]
[9] Xiao S Q, Xie G F 2010 Acta Phys. Sin. 59 4808 (in Chinese) [肖松青, 谢国锋 2010 59 4808]
[10] Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids. (Pergamon, New York)
[11] Thomas B S, Marks N A, Begg B D 2007 Nucl. Instr. and Meth. B 254 211
[12] Smith K L, Zaluzec N J 2005 J. Nucl. Mater. 336 261
[13] Smith K L, Colella M, Cooper R, Vance E R 2003 J. Nucl. Mater. 321 19
计量
- 文章访问数: 7930
- PDF下载量: 714
- 被引次数: 0