Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser

Zhang Xiao-Sheng Yi Wang-Min Hu Ming-Hao Yang Zai-Hua Wu Guan-Hao

Citation:

Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser

Zhang Xiao-Sheng, Yi Wang-Min, Hu Ming-Hao, Yang Zai-Hua, Wu Guan-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large-scale absolute distance measurement system with high accuracy plays a significant role in science and engineering applications. In many fields such as aerospace technology, large-scale manufacture, geodetic survey and civil engineering, absolute distance measurement systems with a range of up to kilometers and accuracy of better than several micrometers are generally required. Traditional laser ranging methods such as the time-of-flight method and the interferometry method are difficult to achieve both large scale and high accuracy. With the development of femtosecond optical frequency comb technology, several ranging methods with larger range and higher accuracy are developed. In the frequency domain, the optical frequency comb has a large number of stable mode lines, or the longitudinal modes, at regular intervals, which generates the inter-mode beat signal. In this study, based on the inter-mode beat of a femtosecond laser, an absolute distance measurement system using multi-wavelength interferometric method is demonstrated. It has a simple experimental setup with high accuracy but in a limited range of 2.5 m due to the 2-period of phase detection. To achieve a large-scale measurement system, the measurement range of the experimental system is extended by using the synthetic wavelength generated by tuning the repetition frequency of the laser. With a repetition frequency change of 0.2 MHz, a synthetic wavelength of up to 1.5 km is realized, thus the measurement range of the experimental setup can be extended to 0.75 km. Besides the reference and measurement path beams, a monitor path beam and two alternately opened mechanical shutters are used to measure and compensate for the phase drift due to the unbalanced drift of the electronic circuit. By using this method, the standard deviation of the phase measurement results in 30 min is 0.022 in the experiment, and the phase drift can be compensated for very well. The measurement results from the experimental system are compared with the results from a commercial heterodyne interferometer, and the comparison between results shows a precision of better than 50 m in a displacement of 1125 mm. In the experiment, the repeatability of absolute distance measurement using the range extending method is better than 3 m, thus the range of the distance measurement system can be theoretically extended up to 7.5 km. In conclusion, we demonstrate that a large-scale absolute distance measurement system using inter-mode beat of a femtosecond laser, has a range of up to 7.5 km, an accuracy of better than 50 m and a repeatability of better than 3 m. The accuracy of the experimental system can be further improved by using photodetectors with higher bandwidth so that a higher inter-mode beat and a shorter wavelength can be used.
      Corresponding author: Wu Guan-Hao, guanhaowu@mail.tsinghua.edu.cn
    • Funds: Project supported by the Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 201510003B022), the Foundation of the Laboratory of High-accuracy Measurement of Spacecraft, China, the National Natural Science Foundation of China (Grant NO. 61575105), the Funding of State Key Laboratory of Transient Optics and Photonics, China (Grant NO. SKLST201406), and the Young Elite Teacher Project of Beijing Higher Education, China (Grant No. YETP0085).
    [1]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [2]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [3]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601 (in Chinese) [秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 61 240601]

    [4]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 63 100601]

    [5]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [6]

    Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G, Jiang H F 2015 Chin. Phys. B 24 064209

    [7]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 60 100601]

    [8]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [9]

    Minoshima K, Inaba H, Matsumoto H 2007 Digest of the IEEE/LEOS Summer Topical Meetings Portland, OR, United States, July 23-25, 2007 p186

    [10]

    Joo K N, Kim S W 2006 Opt. Express 14 5954

    [11]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photonics 3 351

    [12]

    Wu G H, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [13]

    Newbury N R 2011 Nature Photonics 5 186

    [14]

    Hua Q, Zhou W H, Xu Y 2012 Metrology { Measurement Technology 32 1 (in Chinese) [华卿, 周维虎, 许艳 2012 计测技术 32 1]

    [15]

    Edln B 1966 Metrologia 2 71

    [16]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [17]

    Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613

    [18]

    Doloca N R, Melners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

  • [1]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [2]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [3]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601 (in Chinese) [秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 61 240601]

    [4]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 63 100601]

    [5]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [6]

    Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G, Jiang H F 2015 Chin. Phys. B 24 064209

    [7]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 60 100601]

    [8]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [9]

    Minoshima K, Inaba H, Matsumoto H 2007 Digest of the IEEE/LEOS Summer Topical Meetings Portland, OR, United States, July 23-25, 2007 p186

    [10]

    Joo K N, Kim S W 2006 Opt. Express 14 5954

    [11]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photonics 3 351

    [12]

    Wu G H, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [13]

    Newbury N R 2011 Nature Photonics 5 186

    [14]

    Hua Q, Zhou W H, Xu Y 2012 Metrology { Measurement Technology 32 1 (in Chinese) [华卿, 周维虎, 许艳 2012 计测技术 32 1]

    [15]

    Edln B 1966 Metrologia 2 71

    [16]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [17]

    Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613

    [18]

    Doloca N R, Melners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

  • [1] Pan Peng-Hui, Ji Peng-Fei, Lin Gen, Dong Xi-Ming, Zhao Jin-Hui. Theoretical and experimental research of femtosecond laser processing fused silica. Acta Physica Sinica, 2022, 71(24): 247901. doi: 10.7498/aps.71.20221496
    [2] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] Yang Shuai-Shuai, Teng Hao, He Peng, Huang Hang-Dong, Wang Zhao-Hua, Dong Quan-Li, Wei Zhi-Yi. 10 mJ femtosecond Ti: Sapphire regenerative amplifier with large mode size. Acta Physica Sinica, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [4] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [5] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [6] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [7] Ge Wen-Qi, Chai Lu, Hu Ming-Lie, Wang Qing-Yue, Su Liang-Bi, Li Hong-Jun, Zheng Li-He, Xu Jun. Generation of 190 fs optical pulses from a mode-locked Yb, Na: CaF2 laser. Acta Physica Sinica, 2012, 61(1): 014213. doi: 10.7498/aps.61.014213
    [8] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [9] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [10] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [11] Wang Xiao-Lei, Zhang Nan, Zhao You-Bo, Li Zhi-Lei, Zhai Hong-Chen, Zhu Xiao-Nong. Determination of air ionization threshold with femtosecond laser pulses. Acta Physica Sinica, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [12] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [13] Yu Ben-Hai, Dai Neng-Li, Wang Ying, Li Yu-Hua, Ji Ling-Ling, Zheng Qi-Guang, Lu Pei-Xiang. Morphology and mechanism of femtosecond laser-induced structural changes in lithium niobate crystal. Acta Physica Sinica, 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [14] Li De-Rong, Lü Xiao-Hua, Wu Ping, Luo Qing-Ming, Chen R. Wei, Zeng Shao-Qun. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser. Acta Physica Sinica, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
    [15] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [16] Xu Shi-Zhen, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Cheng Zhao-Gu, Feng Dong-Hai, Li Cheng-Bin, Xu Zhi-Zhan. Theoretical analysis of fs-laser induced micro-explosion in fused silica. Acta Physica Sinica, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [17] Liu Yun-Quan, Zhang Jie, Liang Wen-Xi, Wang Zhao-Hua. Theoretical and experimental studies on third harmonic generation of femtosecond Ti:sapphire laser. Acta Physica Sinica, 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [18] Sun Hai-Yi, Jia Tian-Qing, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Li Cheng-Bin, Wang Xiao-Feng, Xu Zhi-Zhan. Ultrafast electronic dymamics during femtosecond laser-induced damage in omnidirectional reflector. Acta Physica Sinica, 2005, 54(10): 4736-4740. doi: 10.7498/aps.54.4736
    [19] Wang Peng, Wang Zhao-Hua, Wei Zhi-Yi, Zheng Jia-An, Sun Jing-Hua, Zhang Jie. Measurement of spectral phase of femotosecond laser pulse using SPIDER technique. Acta Physica Sinica, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [20] LIN JING-QUAN, ZHANG JIE, LI YING-JUN, CHEN LI-MING, Lü TIE-ZHENG, TENG HAO. ABSORPTION OF FEMTOSECOND LASER PULSES BY ATOMIC CLUSTERS. Acta Physica Sinica, 2001, 50(3): 457-461. doi: 10.7498/aps.50.457
Metrics
  • Abstract views:  8099
  • PDF Downloads:  300
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2015
  • Accepted Date:  07 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map