Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Random noise suppression of magnetic resonance sounding signal based on modified short-time Fourier transform

Lin Ting-Ting Li Yue Gao Xing Wan Ling

Citation:

Random noise suppression of magnetic resonance sounding signal based on modified short-time Fourier transform

Lin Ting-Ting, Li Yue, Gao Xing, Wan Ling
PDF
HTML
Get Citation
  • Magnetic resonance sounding (MRS) has the advantage of detecting groundwater content directly without drilling, but the signal-to-noise ratio (SNR) is extremely low which limits the application of the method. Most of the current researches focus on eliminating spikes and powerline harmonic noise in the MRS signal, whereas the influence of random noise cannot be ignored even though it is difficult to suppress due to the irregularity. The common method to eliminate MRS random noise is stacking which requires extensive measurement repetition at the cost of detection efficiency, and it is insufficient when employed in a high-level noise surrounding. To solve this problem, we propose a modified short-time Fourier transform(MSTFT) method, in which used is the short-time Fourier transform on the analytical signal instead of the real-valued signal to obtain the high-precision time-frequency distribution of MRS signal, followed by extracting the time-frequency domain peak amplitude and peak phase to reconstruct the signal and suppress the random noise. The performance of the proposed method is tested on synthetic envelope signals and field data. The using of the MSTFT method to handle a single recording can suppress the random noise and extract MRS signals when SNR is more than –17.21 dB. Compared with the stacking method, the MSTFT achieves an 27.88dB increase of SNR and more accurate parameter estimation. The findings of this study lay a good foundation for obtaining exact groundwater distribution by utilizing magnetic resonance sounding.
      Corresponding author: Wan Ling, wanling@jlu.edu.cn
    • Funds: Project supported by the Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41722405), the National Natural Science Foundation of China (Grant Nos. 41874209, 41974208), the Key Research Projects of Jilin Provincial Science and Technology Department, China (Grant No. 20180201017GX), the Science and Technology Development Projects of Jilin Province, China (Grant No. 20180520183JH), and the Interdisciplinary Program for Doctoral Students of Jilin University, China (Grant No. 101832020DJX066)
    [1]

    林君, 段清明, 王应吉 2011 核磁共振找水仪原理与应用 (北京: 科学出版社) 第2−10页

    Lin J, Duan Q M, Wang Y J 2011 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Beijing: Science Press) pp2−10 (in Chinese)

    [2]

    Legchenko A, Valla P 2002 J. Appl. Geophys. 50 3Google Scholar

    [3]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27Google Scholar

    [4]

    Legchenko A, Valla P 1998 J. Appl. Geophys. 39 77Google Scholar

    [5]

    Legchenko A, Baltassat J M, Beauce A, Berbard J 2002 J. Appl. Geophys. 50 21Google Scholar

    [6]

    Hertrich M 2008 Prog. Nucl. Magn. Reson. Spectrosc. 53 227Google Scholar

    [7]

    Walsh D, Turner P, Grunewald E, Zhang H, Butler J J, Reboulet E, Knobbe S, Christy T, Lane J W, Johnson C D, Munday T, Fitzpatrick A 2013 Ground Water 51 914Google Scholar

    [8]

    Dlugosch R, Günther T, Lukàcs T, Müller-Petke M 2016 Geophysics 81 WB109Google Scholar

    [9]

    Grunewald E, Grombacher D, Walsh D 2016 Geophysics 81 WB85Google Scholar

    [10]

    林君, 张扬, 张思远, 舒旭, 杜文元, 林婷婷 2016 吉林大学学报(地球科学版) 46 1221Google Scholar

    Lin J, Zhang Y, Zhang S Y, Shu X, Du W Y, Lin T T 2016 J. Jilin Univ. (Earth Science Edition) 46 1221Google Scholar

    [11]

    Lin J, Zhang Y, Yang Y J, Sun Y, Lin T T 2017 Rev. Sci. Instrum. 88 064702Google Scholar

    [12]

    Davis A C, Dlugosch R, Queitsch M, Macnae J C, Stolz R, Müller-Petke 2014 Geophys. Res. Lett. 41 4222Google Scholar

    [13]

    Davis A C, Müller-Petke M, Dlugosch R, Quietsch M, Macnae J, Stolz R 2015 ASEG Extended Abstracts 2015 1Google Scholar

    [14]

    Lin T T, Yang Y J, Teng F, Müller-Petke M 2018 Geophys. J. Int. 212 1463Google Scholar

    [15]

    Müller-Petke M, Braun M, Hertrich M, Costabel S, Walbrecker J 2016 Geophysics 81 WB9Google Scholar

    [16]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459Google Scholar

    [17]

    Dalgaard E, Auken E, Larsen J J 2012 Geophys. J. Int. 191 88Google Scholar

    [18]

    Larsen J J 2016 Geophysics 81 WB1Google Scholar

    [19]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103Google Scholar

    [20]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [21]

    Müller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199Google Scholar

    [22]

    Larsen J J, Dalgaard E, Auken E 2014 Geophys. J. Int. 196 828Google Scholar

    [23]

    Dalgaard E, Müller-Petke M, Auken E 2016 Near Surf. Geophys. 14 243Google Scholar

    [24]

    林婷婷, 张扬, 杨莹, 杨玉晶, 滕飞, 万玲 2018 地球 561 3812Google Scholar

    Lin T T, Zhang Y, Yang Y, Yang Y J, Teng F, Wan L 2018 Chinese J. Geophys. 561 3812Google Scholar

    [25]

    Bernard J. 2006 Proceedings of the 3rd Magnetic Resonance Sounding International Workshop Madrid, Spain, October 25−27, 2006 p459

    [26]

    段一斌 2014 硕士学位论文 (成都: 电子科技大学)

    Duan Y B 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [27]

    Marfurt K J, Kirlin R L 2001 Geophysics 66 1274Google Scholar

    [28]

    Behroozmand A A, Dalgaard E, Christiansen A V, Auken E 2013 Near Surf. Geophys. 11 557Google Scholar

  • 图 1  叠加法分别叠加1, 4, 8和16次时消除随机噪声效果时域和频域图

    Figure 1.  Time-domain and frequency-domain diagrams after stacking 1, 4, 8 and 16 times to suppress random noise, respectively.

    图 2  MSTFT与常规短时傅里叶变换之间的区别 (a) 时频幅度谱${A_{\rm{s}}}\left( {\tau, f} \right)$; (b) 时频相位谱${\theta _{\rm{s}}}\left( {\tau, f} \right)$; (c) 高精度时频幅度谱$A\left( {\tau, f} \right)$; (d) 高精度时频相位谱$\theta \left( {\tau, f} \right)$; (e) ${A_{\rm{s}}}\left( {\tau, f} \right)$$A\left( {\tau, f} \right)$的差异; (f) ${\theta _{\rm{s}}}\left( {\tau, f} \right)$$\theta \left( {\tau, f} \right)$的差异

    Figure 2.  Difference between the MSTFT and the conventional short-time Fourier transform: (a) time–frequency amplitude spectrum${A_{\rm{s}}}\left( {\tau, f} \right)$; (b) time–frequency phase spectrum${\theta _{\rm{s}}}\left( {\tau, f} \right)$; (c) high-precision time–frequency amplitude spectrum$A\left( {\tau, f} \right)$; (d) high-precision time–frequency phase spectrum$\theta \left( {\tau, f} \right)$; (e) difference between${A_{\rm{s}}}\left( {\tau, f} \right)$ and$A\left( {\tau, f} \right)$; (f) difference between${\theta _{\rm{s}}}\left( {\tau, f} \right)$ and$\theta \left( {\tau, f} \right)$.

    图 3  MSTFT方法消除随机噪声过程示例 (a) 仿真含噪数据; (b)瞬时幅度; (c) 瞬时相位; (d) 峰值幅度; (e) 峰值相位; (f)重构信号

    Figure 3.  Example of the basic procedure for the random noise suppression using MSTFT: (a) Synthetic noisy signal; (b) instantaneous amplitude; (c) instantaneous phase; (d) peak amplitude; (e) peak phase; (f) reconstructed signal.

    图 4  3组仿真随机噪声消噪结果图 (a)低噪声强度下仿真数据高精度时频域振幅; (b) 低噪声强度下消噪结果时域图; (c) 低噪声强度下消噪结果频域图; (d) 中噪声强度下仿真数据高精度时频域振幅; (e) 中噪声强度下消噪结果时域图; (f) 中噪声强度下消噪结果频域图; (g) 高噪声强度下仿真数据高精度时频域振幅; (h) 高噪声强度下消噪结果时域图; (i) 高噪声强度下消噪结果频域图

    Figure 4.  The de-noising results of 3 sets of random noise simulation: (a) High-precision time-frequency domain amplitude of simulated data under low noise intensity; (b) time domain results under low noise intensity; (c) frequency domain results under low noise intensity; (d) high-precision time-frequency domain amplitude of simulated data under moderate noise intensity; (e) time domain results under moderate noise intensity; (f) frequency domain results under moderate noise intensity; (g) high-precision time-frequency domain amplitude of simulated data under high noise intensity; (h) time domain results under high noise intensity; (i) frequency domain results under high noise intensity.

    图 5  叠加法和MSTFT方法消除随机噪声效果对比图 (a) 叠加法消除随机噪声时域图; (b) MSTFT方法消除随机噪声时域图; (c) 叠加法和MSTFT方法消除随机噪声频域对比图

    Figure 5.  Comparison of the de-noising results by using stacking and MSTFT methods: (a) Results of random noise elimination by stacking in time domain; (b) results of random noise elimination by MSTFT in time domain; (c) comparison of the de-noising results by using stacking and MSTFT methods in frequency domain.

    图 6  实测数据处理结果图 (a) 野外探测原始数据; (b) 叠加法消除随机噪声后数据; (c) MSTFT方法消除随机噪声后数据

    Figure 6.  De-noising results of field data: (a) Original field data; (b) random noise elimination by stacking; (c) random noise elimination by MSTFT.

    图 7  叠加法和MSTFT方法处理4个脉冲矩信号结果对比图 (a) 时域对比结果; (b) 频域对比结果

    Figure 7.  Comparison of the de-noising results of 4 pulse moments by using stacking and MSTFT methods: (a) Time domain comparison; (b) frequency domain comparison.

    图 8  叠加法和MSTFT处理实测数据提取参数结果对比 (a) 初始振幅; (b) 弛豫时间; (c) 频率偏移

    Figure 8.  Parameter estimation after random noise elimination of field data by using stacking and MSTFT methods: (a) Initial amplitude; (b) relaxation time; (c) frequency offset.

    图 9  叠加法和MSTFT处理实测数据提取MRS信号反演结果与钻孔结果对比 (a) 叠加法; (b) MSTFT方法

    Figure 9.  Comparison of the inversion of the field data processd by stacking and MSTFT methods respectively with the borehole log: (a) Stacking result; (b) MSTFT result.

    表 1  3组仿真随机噪声消噪后参数估计情况表

    Table 1.  The parameter estimation after de-noising of 3 sets of simulated random noise.

    E0/nV$T_2^* $ /ms$\Delta f$ / HzSNR/dBRMSE/nV
    信号1
    (SNR = 0.68 dB)
    200.19 ± 3.01149.2 ± 2.8–0.03 ± 0.0132.671.03 ± 0.55
    信号2
    (SNR = –5.20 dB)
    202.61 ± 4.90152.0 ± 6.70.04 ± 0.0324.013.79 ± 1.89
    信号3
    (SNR = –11.22 dB)
    204.12 ± 5.96154.4 ± 12.80.04 ± 0.0620.815.81 ± 2.42
    DownLoad: CSV

    表 2  叠加法和MSTFT消除随机噪声提取参数结果对比

    Table 2.  Comparison of the parameter estimation after random noise elimination by stacking and MSTFT methods.

    E0/nV$T_2^* $ /ms$\Delta f$/HzSNR/dBRMSE/nV
    测点1: q116次叠加167.49270.1–0.53–16.81484.95
    MSTFT197.42 ± 4.41102.6 ± 5.3–0.31 ± 0.0911.0713.31 ± 8.09
    测点1: q216次叠加163.78285.5–0.65–16.85487.52
    MSTFT195.77 ± 5.02103.9 ± 5.9–0.34 ± 0.109.8319.10 ± 10.83
    测点2: q132次叠加217.43336.9–0.74–17.05498.41
    MSTFT205.20 ± 6.25105.7 ± 8.7–0.36 ± 0.118.0824.31 ± 12.36
    测点2: q232次叠加221.51359.4–0.92–17.21507.79
    MSTFT206.21 ± 7.47107.4 ± 10.9–0.37 ± 0.116.9127.70 ± 18.64
    DownLoad: CSV
    Baidu
  • [1]

    林君, 段清明, 王应吉 2011 核磁共振找水仪原理与应用 (北京: 科学出版社) 第2−10页

    Lin J, Duan Q M, Wang Y J 2011 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Beijing: Science Press) pp2−10 (in Chinese)

    [2]

    Legchenko A, Valla P 2002 J. Appl. Geophys. 50 3Google Scholar

    [3]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27Google Scholar

    [4]

    Legchenko A, Valla P 1998 J. Appl. Geophys. 39 77Google Scholar

    [5]

    Legchenko A, Baltassat J M, Beauce A, Berbard J 2002 J. Appl. Geophys. 50 21Google Scholar

    [6]

    Hertrich M 2008 Prog. Nucl. Magn. Reson. Spectrosc. 53 227Google Scholar

    [7]

    Walsh D, Turner P, Grunewald E, Zhang H, Butler J J, Reboulet E, Knobbe S, Christy T, Lane J W, Johnson C D, Munday T, Fitzpatrick A 2013 Ground Water 51 914Google Scholar

    [8]

    Dlugosch R, Günther T, Lukàcs T, Müller-Petke M 2016 Geophysics 81 WB109Google Scholar

    [9]

    Grunewald E, Grombacher D, Walsh D 2016 Geophysics 81 WB85Google Scholar

    [10]

    林君, 张扬, 张思远, 舒旭, 杜文元, 林婷婷 2016 吉林大学学报(地球科学版) 46 1221Google Scholar

    Lin J, Zhang Y, Zhang S Y, Shu X, Du W Y, Lin T T 2016 J. Jilin Univ. (Earth Science Edition) 46 1221Google Scholar

    [11]

    Lin J, Zhang Y, Yang Y J, Sun Y, Lin T T 2017 Rev. Sci. Instrum. 88 064702Google Scholar

    [12]

    Davis A C, Dlugosch R, Queitsch M, Macnae J C, Stolz R, Müller-Petke 2014 Geophys. Res. Lett. 41 4222Google Scholar

    [13]

    Davis A C, Müller-Petke M, Dlugosch R, Quietsch M, Macnae J, Stolz R 2015 ASEG Extended Abstracts 2015 1Google Scholar

    [14]

    Lin T T, Yang Y J, Teng F, Müller-Petke M 2018 Geophys. J. Int. 212 1463Google Scholar

    [15]

    Müller-Petke M, Braun M, Hertrich M, Costabel S, Walbrecker J 2016 Geophysics 81 WB9Google Scholar

    [16]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459Google Scholar

    [17]

    Dalgaard E, Auken E, Larsen J J 2012 Geophys. J. Int. 191 88Google Scholar

    [18]

    Larsen J J 2016 Geophysics 81 WB1Google Scholar

    [19]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103Google Scholar

    [20]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [21]

    Müller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199Google Scholar

    [22]

    Larsen J J, Dalgaard E, Auken E 2014 Geophys. J. Int. 196 828Google Scholar

    [23]

    Dalgaard E, Müller-Petke M, Auken E 2016 Near Surf. Geophys. 14 243Google Scholar

    [24]

    林婷婷, 张扬, 杨莹, 杨玉晶, 滕飞, 万玲 2018 地球 561 3812Google Scholar

    Lin T T, Zhang Y, Yang Y, Yang Y J, Teng F, Wan L 2018 Chinese J. Geophys. 561 3812Google Scholar

    [25]

    Bernard J. 2006 Proceedings of the 3rd Magnetic Resonance Sounding International Workshop Madrid, Spain, October 25−27, 2006 p459

    [26]

    段一斌 2014 硕士学位论文 (成都: 电子科技大学)

    Duan Y B 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [27]

    Marfurt K J, Kirlin R L 2001 Geophysics 66 1274Google Scholar

    [28]

    Behroozmand A A, Dalgaard E, Christiansen A V, Auken E 2013 Near Surf. Geophys. 11 557Google Scholar

  • [1] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [2] Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method. Acta Physica Sinica, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [3] Lü Xi-Ming, Li Hui, You Jing, Li Wei, Wang Peng-Ye, Li Ming, Xi Xu-Guang, Dou Shuo-Xing. An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing. Acta Physica Sinica, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [4] Wei Yu-Tong, Liu Shang-Kuo, Yan Ting-Yu, Li Qi-Wei. Study on the methods of calibrating spectral line position of interference imaging spectrometer. Acta Physica Sinica, 2016, 65(8): 080601. doi: 10.7498/aps.65.080601
    [5] Jiao Yang, Xu Liang, Gao Min-Guang, Jin Ling, Tong Jing-Jing, Li Sheng, Wei Xiu-Li. Real-time data processing of remote measurement of air pollution by infrared passive scanning imaging system. Acta Physica Sinica, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [6] Liu Yang-Yang, Lü Qun-Bo, Zeng Xiao-Ru, Huang Min, Xiang Li-Bin. Critical data processing technology for spectral image inversion in a static computational spectral imager. Acta Physica Sinica, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [7] Zhang Li, Yang Xiao-Li, Sun Zhong-Kui. Generalized projective lag synchronization between delay-coupled networks under circumstance noise. Acta Physica Sinica, 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [8] Yan Zhen-Gang, Lin Ying-Lu, Yang Juan, Li Zhen-Hua, Bian Bao-Min. The distribution functions of characteristic quantities for random noise signal of photodetector. Acta Physica Sinica, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [9] Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qiu Yan. The effect of random noise for empirical mode decomposition of nonlinear signals. Acta Physica Sinica, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [10] Jian Xiao-Hua, Zhang Chun-Min, Zhu Bao-Hui, Ren Wen-Yi. The data processing method of the temporarily and spatially mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [11] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Resonance response of a single-degree-of-freedom nonlinear dry system to a randomly disordered periodic excitation. Acta Physica Sinica, 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [12] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Response of Duffing one-sided constraint oscillator to combined deterministic harmonic and random excitation. Acta Physica Sinica, 2008, 57(11): 6888-6895. doi: 10.7498/aps.57.6888
    [13] Gai Qi, Wang Ming-Wei, Li Zhi-Lei, Zhai Hong-Chen. Doubled random-phase encryption based on discrete quaternion fourier-transforms. Acta Physica Sinica, 2008, 57(11): 6955-6961. doi: 10.7498/aps.57.6955
    [14] Yu Yuan-Qin, Lin Ke, Yu Feng, Zhou Xiao-Guo, Liu Shi-Lin, Ma Xing-Xiao. New treatment of CARS spectrum to determine the Raman depolarization ratio. Acta Physica Sinica, 2007, 56(5): 2699-2703. doi: 10.7498/aps.56.2699
    [15] Sun Ke-Xu, Jiang Shao-En, Yi Rong-Qing, Cui Yan-Li, Ding Yong-Kun, Liu Shen-Ye. Research on time characteristics of soft X-ray diode. Acta Physica Sinica, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [16] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Meng Guang, Fang Tong. On double-peak probability density functions of a Duffing oscillator under narrow-band random excitations. Acta Physica Sinica, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [17] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcation of safe basins in softening Duffing oscillator under bounded noise excitation. Acta Physica Sinica, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
    [18] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [19] CHI LING-FEI, LIN KUI-XUN, YAO RUO-HE, LIN XUAN-YING, YU CHU-YING, YU YUN-PENG. DIAGNOSTIC OF RF PLASMA BY USING LANGMUIR PROBE AND ITS NUMERICAL PROCESSING. Acta Physica Sinica, 2001, 50(7): 1313-1317. doi: 10.7498/aps.50.1313
    [20] YAO RUO-HE, CHI LING-FEI, LIN XUAN-YING, SHI WANG-ZHOU, LIN KUI-XUN. THE DIAGNOSTICS OF RF GLOW DISCHARGE PLASMA BY A PROBE AND ITS DATA PROCESS. Acta Physica Sinica, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
Metrics
  • Abstract views:  4629
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2020
  • Accepted Date:  07 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map