搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ba0.5Sr0.5TiO3有序构型的第一性原理研究

何建平 吕文中 汪小红

引用本文:
Citation:

Ba0.5Sr0.5TiO3有序构型的第一性原理研究

何建平, 吕文中, 汪小红

First-principles study of ordered structures in Ba0.5Sr0.5TiO3

He Jian-Ping, Lü Wen-Zhong, Wang Xiao-Hong
PDF
导出引用
  • 采用第一性原理计算了Ba0.5Sr0.5TiO3三种有序构型的晶格结构和对应的电子结构,晶格结构的详细分析结果表明BST{100}有序构型为四方相,Ti-O八面体中Ti原子和Ba-Sr平面上的O原子沿[100]方向分别偏心位移0.040 Å和0.065 Å,八面体畸变导致反平行自发极化出现,构型处于反铁电态. BST{110}构型也是四方相,并且(110)和(1 关键词:
  • 钛酸锶钡 / 
  • 第一性原理 / 
  • 有序结构 / 
  • 铁电性 

Abstract

The lattice structures and the electronic structures of different ordered structures in Ba0.5Sr0.5TiO3 are calculated by the first-principles method. The results of geometry structures and overlap populations reveal that the BST{100} ordered structure is tetragonal. The O atoms in Ti-O octahedron parallel to Ba plane and Sr plane are shifted ward Sr plane by 0.065 Å. And the Ti atom in Ti-O octahedron has a off-center displacement of 0.040 Å. The off-center displacements of O atoms and Ti atoms result in the distortion of Ti-O octahedron, and the occurrence of antiparallel spontaneous polarization. Therefore the BST{100} ordered structure is in antiferroelectric phase. The O atoms in BST{110} ordered structure also have a off-center displacement of 0.029 Å, while the Ti atom in Ti-O octahedron is still in-center. This tetragonal structure is in paraelectric phase. The BST{111} ordered structure is in cubic paraelectric phase. The calculated density of states shows that the hybridization between Ti 3d and O 2p plays a primary role in the generation of ferroelectricity. The results of the present work imply that the local order of A site can significantly influences the structural phase transition of disordered BST solid solution.
  • 基金项目: 国防基础科研重大项目(批准号:A1420080168)资助的课题.

参考文献

[1]

Sengupta L C, Ngo E, Stowell S, Lancto R, Drach W C, Koscica T E, Babbitt R W 1994 Ferroelectrics 153 359

[2]

Wang X H, Lu W Z, Liu J, Zhou Y L, Zhou D X 2006 J. Eur. Ceram. Soc. 26 1981

[3]

Ioachim A, Toacsan M I, Banciu M G, Nedelcu L, Vasiliu F, Alexandru H V, Berbecaru C, Stoica G 2007 Prog. Solid State Chem. 35 513

[4]

Chou X J, Zhai J W, Yao X 2007 Appl. Phys. Lett. 91 122908

[5]

Nenasheva E A, Kartenko N F, Gaidamaka I M, Trubitsyna O N, Redozubov S S, Dedyk A I, Kanareykin A D 2010 J. Eur. Ceram. Soc. 30 395

[6]

Cohen R E 1992 Nature 358 136

[7]

Cohen R E, Krakauer H 1992 Ferroelectrics 136 65

[8]

Padilla J, Vanderbilt D 1997 Phys. Rev. B 56 1625

[9]

Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417

[10]

Sepliarsky M, Asthagiri A, Phillpot S R, Stachiotti M G, Migoni R L 2005 Curr. Opin. Solid State Mater. Sci. 9 107

[11]

Xue W D, Chen Z Y, Yang C, Li Y R 2005 Acta Phys. Sin. 54 857 (in Chinese) [薛卫东、陈召勇、杨 春、李言荣 2005 54 857]

[12]

Liu B N, Ma Y, Zhou Y C 2010 Acta Phys. Sin. 59 3377 (in Chinese) [刘柏年、马 颖、周益春 2010 59 3377]

[13]

Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Chin. Phys. B 17 274

[14]

Zhang Z Y, Yun J N, Zhang F C 2007 Chin. Phys. 16 2791

[15]

Yun J N, Zhang Z Y, Yan J F, Deng Z H 2010 Chin. Phys. B 19 017101

[16]

de Lazaro S R, de Lucena P R, Sambrano J R, Pizani P S, Beltran A, Varela J A, Longo E 2007 Phys. Rev. B 75 144111

[17]

Choudhury N, Wu Z G, Walter E J, Cohen R E 2005 Phys. Rev. B 71 125134

[18]

Xue W D, Li Y R, Yang C 2005 Chin. J Chem. Phys. 18 179 (in Chinese) [薛卫东、李言荣、杨 春 2005 化学 18 179]

[19]

Wang Y X 2005 Solid State Commun. 135 290

[20]

Kong X L, Hou Q Y, Su X Y, Qi Y H, Zhi X F 2009 Acta Phys. Sin. 58 4128 (in Chinese) [孔祥兰、侯芹英、苏希玉、齐延华、支晓芬 2009 58 4128]

[21]

Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

[22]

Vanderbilt D 1990 Phys. Rev. B 41 7892

[23]

Perdew J P, Yue W 1986 Phys. Rev. B 33 8800

[24]

Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

[25]

Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

[26]

Kuo S Y, Liao W Y, Hsieh W F 2001 Phys. Rev. B 64 224103

[27]

Terai K, Lippmaa M, Ahmet P, Chikyow T, Fujii T, Koinuma H, Kawasaki M 2002 Appl. Phys. Lett. 80 4437

[28]

Evarestov R A, Tupitsyn I I, Bandura A V, Alexandrov V E 2006 Int. J. Quantum Chem. 106 2191

施引文献

  • [1]

    Sengupta L C, Ngo E, Stowell S, Lancto R, Drach W C, Koscica T E, Babbitt R W 1994 Ferroelectrics 153 359

    [2]

    Wang X H, Lu W Z, Liu J, Zhou Y L, Zhou D X 2006 J. Eur. Ceram. Soc. 26 1981

    [3]

    Ioachim A, Toacsan M I, Banciu M G, Nedelcu L, Vasiliu F, Alexandru H V, Berbecaru C, Stoica G 2007 Prog. Solid State Chem. 35 513

    [4]

    Chou X J, Zhai J W, Yao X 2007 Appl. Phys. Lett. 91 122908

    [5]

    Nenasheva E A, Kartenko N F, Gaidamaka I M, Trubitsyna O N, Redozubov S S, Dedyk A I, Kanareykin A D 2010 J. Eur. Ceram. Soc. 30 395

    [6]

    Cohen R E 1992 Nature 358 136

    [7]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 65

    [8]

    Padilla J, Vanderbilt D 1997 Phys. Rev. B 56 1625

    [9]

    Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417

    [10]

    Sepliarsky M, Asthagiri A, Phillpot S R, Stachiotti M G, Migoni R L 2005 Curr. Opin. Solid State Mater. Sci. 9 107

    [11]

    Xue W D, Chen Z Y, Yang C, Li Y R 2005 Acta Phys. Sin. 54 857 (in Chinese) [薛卫东、陈召勇、杨 春、李言荣 2005 54 857]

    [12]

    Liu B N, Ma Y, Zhou Y C 2010 Acta Phys. Sin. 59 3377 (in Chinese) [刘柏年、马 颖、周益春 2010 59 3377]

    [13]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Chin. Phys. B 17 274

    [14]

    Zhang Z Y, Yun J N, Zhang F C 2007 Chin. Phys. 16 2791

    [15]

    Yun J N, Zhang Z Y, Yan J F, Deng Z H 2010 Chin. Phys. B 19 017101

    [16]

    de Lazaro S R, de Lucena P R, Sambrano J R, Pizani P S, Beltran A, Varela J A, Longo E 2007 Phys. Rev. B 75 144111

    [17]

    Choudhury N, Wu Z G, Walter E J, Cohen R E 2005 Phys. Rev. B 71 125134

    [18]

    Xue W D, Li Y R, Yang C 2005 Chin. J Chem. Phys. 18 179 (in Chinese) [薛卫东、李言荣、杨 春 2005 化学 18 179]

    [19]

    Wang Y X 2005 Solid State Commun. 135 290

    [20]

    Kong X L, Hou Q Y, Su X Y, Qi Y H, Zhi X F 2009 Acta Phys. Sin. 58 4128 (in Chinese) [孔祥兰、侯芹英、苏希玉、齐延华、支晓芬 2009 58 4128]

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [23]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Kuo S Y, Liao W Y, Hsieh W F 2001 Phys. Rev. B 64 224103

    [27]

    Terai K, Lippmaa M, Ahmet P, Chikyow T, Fujii T, Koinuma H, Kawasaki M 2002 Appl. Phys. Lett. 80 4437

    [28]

    Evarestov R A, Tupitsyn I I, Bandura A V, Alexandrov V E 2006 Int. J. Quantum Chem. 106 2191

  • [1] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究.  , 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] 轩书科. 钾钡共掺菲分子结构和电子特性的第一性原理研究.  , 2017, 66(23): 237401. doi: 10.7498/aps.66.237401
    [5] 郭宇琦, 潘俊星, 张进军, 孙敏娜, 王宝凤, 武海顺. 在光敏性三元聚合物混合物中构造 多尺度有序图案.  , 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [6] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [7] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [8] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究.  , 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [9] 彭静, 徐智谋, 王双保, 董泽华. 非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能.  , 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [10] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福. 有序结构氟聚合物压电驻极体的制备和压电性研究.  , 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [11] 赵庆勋, 马继奎, 耿波, 魏大勇, 关丽, 刘保亭. 氮氢混合气氛退火中氢对Bi4Ti3O12铁电性能的影响.  , 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [12] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究.  , 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [13] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究.  , 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [14] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [15] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算.  , 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [16] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究.  , 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [17] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性.  , 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [18] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅱ),广义能量极小值原理和系统的发展.  , 2003, 52(6): 1354-1359. doi: 10.7498/aps.52.1354
    [19] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅰ),最小熵产生原理和有序结构.  , 2003, 52(6): 1379-1384. doi: 10.7498/aps.52.1379
    [20] 张 磊, 钟维烈, 彭毅萍, 王玉国. 钛酸锶钡的铁电相变与晶胞体积的关联.  , 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
  • 目录
    计量
    出版历程

    /

    返回文章
    返回
    Baidu
    map