-
Monoclinic Fe2(MoO4)3 sample is synthesized by the hydrothermal method, and characterized via high temperature X-ray diffraction and thermogravimetric-differential scanning calorimetry. It is observed that the reversible phase transition between the low-temperature monoclinic and high-temperature orthorhombic phases occurs at about 510 ℃. The cell parameters at different temperatures are calculated by the Rietveld refinement method. In a temperature range from 25 ℃ to 400 ℃, the a, b and c crystallographic axes with the monoclinic phase gradually expand. On the other hand, in a temperature range from 530 ℃ to 710 ℃, the orthorhombic phase exhibits a negative thermal expansion (NTE) behavior, in which the b and c axes gradually contract but the a axis first contracts and then expands a little. Atomic and electronic structures are investigated using first-principle calculation. Results indicate that the Mo-O bonds are much stronger than the Fe-O bonds in Fe2(MoO4)_{3} and the MoO4 tetrahedrons are more rigidly than FeO6 octahedrons. To reveal the relationship between NTE and polyhedral distortion, the phonon density of state of Fe2(MoO4)3 is calculated using the ab initio method. The experimental Raman spectrum positions can be identified in the calculated dispersion of the total phonon density of states (DOS). Meanwhile, by calculating the Grneisen parameters for phonon branches at point, the optical branch with the lowest vibration frequency is believed to have the largest negative Grneisen parameter. Furthermore, we analyze the vibrational behaviors of atoms, and find that oxygen atoms have different vibrational eigenvectors from Fe or Mo atoms. and more obvious amplitudes than Fe or Mo atoms. Therefore, it is concluded that the transverse vibration of the oxygen bridge atom between the MoO4 tetrahedron and FeO6 octahedron, the soft distortion of FeO6 octahedrons, and the rigid rotation of MoO4 tetrahedrons jointly lead to the negative thermal expansion of Fe2(MoO4)3,.
-
Keywords:
- Fe2(MoO4)3 /
- phonon mode /
- negative thermal expansion /
- first principles calculations
[1] Guillaume C E 1905 Nature 71 134
[2] Tran K D, Groshens T J, Nelson J G 2001 Mater. Sci. Eng. A 303 234
[3] Sleight A 2003 Nature 425 674
[4] Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001
[5] Chen J, Xing X R, Liu G R, Li J H, Liu Y T 2006 Appl. Phys. Lett. 89 101914
[6] Patwe S J, Achary S N, Mathews M D, Tyagi A K 2005 J. Alloys Compd. 390 100
[7] Chen J, Xing X R, Yu R B, Liu G R, Wu L, Chen X L 2004 J. Mater. Res. 19 3614
[8] Chen J, Xing X R, Deng J X, Liu G R 2004 J. Alloys Compd. 372 259
[9] Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 59 3350]
[10] Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90
[11] Goodwin A L, Kepert C J 2005 Phys. Rev. B 71 140301
[12] Woodcock D A, Lightfoot P, Villaescusa L A, Daz-Cabaas M J, Camblor M A, Engberg D 1999 Chem. Mater. 11 2508
[13] Mounet N, Marzari N 2005 Phys. Rev. B 71 205214
[14] Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912
[15] Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580
[16] Welche P R L, Heine V, Dove M T 1998 Phys. Chem. Miner. 26 63
[17] Chen J, Hu L, Deng J X, Xing X R 2015 Chem. Soc. Rev. 44 3522
[18] Hummel F A 1951 J. Am. Ceram. Soc. 34 235
[19] Agrawal D K, Roy R, McKinstry H A 1987 Mater. Res. Bull. 22 83
[20] Wang F, Xie, Y, Chen J, Fu H, Xing X 2013 Appl. Phys. Lett. 103 221901
[21] 21 Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Compd. 339 207
[22] Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148
[23] Wang Z P, Song W B, ZHAO Y, Jiang Y J, Liang E J 2011 The Journal of Light Scattering 23 250
[24] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T, Chen D F 2012 Chin. Phys. B 21 116102
[25] Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501
[26] Song W B, Yuan, B H, Liu X H, Li Z Y, Wang J Q, Liang E J 2014 J. Mater. Res. 29 849
[27] Yue J L, Zhou Y N, Shi S Q, Shadike Z L P Y, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810
[28] Gava V, Martinotto A L, Perottoni C A 2012 Phys. Rev. Lett. 109 195503
[29] Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B 90 045409
[30] Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y, Guo Z X 2013 Mater. Res. Bull. 48 2724
[31] Ding Y, Yu S H, Liu C, Zang Z A 2007 Chem. Eur. J. 13 746
[32] Harrison W T 1995 Mater. Res. Bull. 30 1325
[33] Blchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467
[37] Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[39] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 382
[40] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
[41] Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[42] Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 60 028201]
[43] Fang J X, Lu D 1982 Solid State Physics (Vol. 1) (Shanghai: Shanghai Scientific Technical Publishers) p143 (in Chinese) [方俊鑫, 陆栋 1982 固体物理学(上册) (上海: 上海科学技术出版社) 第143页]
[44] Xu Q, Jia G, Zhang J, Feng Z, Li C 2008 J. Phys. Chem. C 112 9387
[45] Ravindran T R, Arora A K, Chandra S, Valsakumar M C, Shekar N C 2007 Phys. Rev. B 76 054302
[46] Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y 2008 J. Phys. Chem. A 112 12582
[47] Weller M T, Henry P F, Wilson C C 2000 J. Phys. Chem. B 104 12224
-
[1] Guillaume C E 1905 Nature 71 134
[2] Tran K D, Groshens T J, Nelson J G 2001 Mater. Sci. Eng. A 303 234
[3] Sleight A 2003 Nature 425 674
[4] Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001
[5] Chen J, Xing X R, Liu G R, Li J H, Liu Y T 2006 Appl. Phys. Lett. 89 101914
[6] Patwe S J, Achary S N, Mathews M D, Tyagi A K 2005 J. Alloys Compd. 390 100
[7] Chen J, Xing X R, Yu R B, Liu G R, Wu L, Chen X L 2004 J. Mater. Res. 19 3614
[8] Chen J, Xing X R, Deng J X, Liu G R 2004 J. Alloys Compd. 372 259
[9] Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 59 3350]
[10] Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90
[11] Goodwin A L, Kepert C J 2005 Phys. Rev. B 71 140301
[12] Woodcock D A, Lightfoot P, Villaescusa L A, Daz-Cabaas M J, Camblor M A, Engberg D 1999 Chem. Mater. 11 2508
[13] Mounet N, Marzari N 2005 Phys. Rev. B 71 205214
[14] Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912
[15] Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580
[16] Welche P R L, Heine V, Dove M T 1998 Phys. Chem. Miner. 26 63
[17] Chen J, Hu L, Deng J X, Xing X R 2015 Chem. Soc. Rev. 44 3522
[18] Hummel F A 1951 J. Am. Ceram. Soc. 34 235
[19] Agrawal D K, Roy R, McKinstry H A 1987 Mater. Res. Bull. 22 83
[20] Wang F, Xie, Y, Chen J, Fu H, Xing X 2013 Appl. Phys. Lett. 103 221901
[21] 21 Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Compd. 339 207
[22] Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148
[23] Wang Z P, Song W B, ZHAO Y, Jiang Y J, Liang E J 2011 The Journal of Light Scattering 23 250
[24] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T, Chen D F 2012 Chin. Phys. B 21 116102
[25] Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501
[26] Song W B, Yuan, B H, Liu X H, Li Z Y, Wang J Q, Liang E J 2014 J. Mater. Res. 29 849
[27] Yue J L, Zhou Y N, Shi S Q, Shadike Z L P Y, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810
[28] Gava V, Martinotto A L, Perottoni C A 2012 Phys. Rev. Lett. 109 195503
[29] Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B 90 045409
[30] Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y, Guo Z X 2013 Mater. Res. Bull. 48 2724
[31] Ding Y, Yu S H, Liu C, Zang Z A 2007 Chem. Eur. J. 13 746
[32] Harrison W T 1995 Mater. Res. Bull. 30 1325
[33] Blchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467
[37] Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[39] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 382
[40] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
[41] Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[42] Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 60 028201]
[43] Fang J X, Lu D 1982 Solid State Physics (Vol. 1) (Shanghai: Shanghai Scientific Technical Publishers) p143 (in Chinese) [方俊鑫, 陆栋 1982 固体物理学(上册) (上海: 上海科学技术出版社) 第143页]
[44] Xu Q, Jia G, Zhang J, Feng Z, Li C 2008 J. Phys. Chem. C 112 9387
[45] Ravindran T R, Arora A K, Chandra S, Valsakumar M C, Shekar N C 2007 Phys. Rev. B 76 054302
[46] Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y 2008 J. Phys. Chem. A 112 12582
[47] Weller M T, Henry P F, Wilson C C 2000 J. Phys. Chem. B 104 12224
Catalog
Metrics
- Abstract views: 6647
- PDF Downloads: 274
- Cited By: 0