-
Dominant features of relaxor ferroelectrics are dielectric dispersion and the nonlinear relationship between reciprocal dielectric constant and temperature. The result of the analysis of the thermal dynamic function for core-shell structure in a grain shows that the core-shell structure doped with dopant in linear gradient descending ingredients can remain high dielectric constant at low temperatures, but cannot lead to the nonlinear relationship between reciprocal dielectric constant and temperature. By comparing diffusion transitions with different doping ingredients, it is suggested that the concentration of ingredient will affect the inhomogeneity of the doping ingredient. A wide distribution of the ingredient between grains by high doping concentration will result in the nonlinear relationship between reciprocal dielectric constant and temperature, and therefore the coexistence of grains in paraelectric phase and in ferroelectric phase in the peak area of dielectric constant. The change of measurement temperature will affect the ratio of the grains in two phases and the change in ferroelectric domains, which results in ferroelectric dielectric dispersion. The core-shell structure will increase the dielectric dispersion. Ferroelectric ceramics, doping species and their concentrations, and sintering temperature all can influence the inhomogeneity of core-shell structure and dielectric dispersion.
-
Keywords:
- relaxor ferroelectrics /
- core-shell structure /
- dielectric dispersion
[1] Viehland D, Jang S J, Cross L E, Wuttig M 1992 Phys. Rev. B 46 8003
[2] Cross L E 1987 Ferroelectrics 76 241
[3] Smolenskii G A 1970 J. Phys. Soc. Jpn. 28 26
[4] Cao W Q, Yang L, Ismail M M, Feng P 2011 Ceram. Intern. 37 1587
[5] Simon A, Ravez J, Maglione M 2004 J. Phys. Cond. Matter. 16 963
[6] Hennings D, Schnell H, Simon G 1982 J. Am. Ceram. Soc. 65 539
[7] Farhi R, Marssi M E, Simon A, Ravez J 1999 Eur. Phys. J. B 9 559
[8] Yao X, Chen Z L, Cross L E 1983 J. Appl. Phys. 54 3399
[9] Yao X, Chen Z L, Cross L E 1984 Ferroelectrics 54 163
[10] Cross L E 1987 Ferroelectrics 76 241
[11] Feng P, Cao W Q 2010 J. non-Cryst. Solids 356 1660
[12] Hennings D, Rosenstein G 1984 J. Am. Ceram. Soc. 67 250
[13] Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163
[14] Ding N, Tang X G, Kuang S J, Wu J B, Liu Q X, He Q Y 2010 Acta Phys. Sin. 59 6613 (in Chinese) [丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉 2010 59 6613]
[15] Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 60 046105]
[16] Mao C L, Dong X L, Wang G S, Yao C H, Cao F, Cao S, Yang L H, Wang Y L 2009 Acta Phys. Sin. 58 5784 (in Chinese) [毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令 2009 58 5784]
-
[1] Viehland D, Jang S J, Cross L E, Wuttig M 1992 Phys. Rev. B 46 8003
[2] Cross L E 1987 Ferroelectrics 76 241
[3] Smolenskii G A 1970 J. Phys. Soc. Jpn. 28 26
[4] Cao W Q, Yang L, Ismail M M, Feng P 2011 Ceram. Intern. 37 1587
[5] Simon A, Ravez J, Maglione M 2004 J. Phys. Cond. Matter. 16 963
[6] Hennings D, Schnell H, Simon G 1982 J. Am. Ceram. Soc. 65 539
[7] Farhi R, Marssi M E, Simon A, Ravez J 1999 Eur. Phys. J. B 9 559
[8] Yao X, Chen Z L, Cross L E 1983 J. Appl. Phys. 54 3399
[9] Yao X, Chen Z L, Cross L E 1984 Ferroelectrics 54 163
[10] Cross L E 1987 Ferroelectrics 76 241
[11] Feng P, Cao W Q 2010 J. non-Cryst. Solids 356 1660
[12] Hennings D, Rosenstein G 1984 J. Am. Ceram. Soc. 67 250
[13] Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163
[14] Ding N, Tang X G, Kuang S J, Wu J B, Liu Q X, He Q Y 2010 Acta Phys. Sin. 59 6613 (in Chinese) [丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉 2010 59 6613]
[15] Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 60 046105]
[16] Mao C L, Dong X L, Wang G S, Yao C H, Cao F, Cao S, Yang L H, Wang Y L 2009 Acta Phys. Sin. 58 5784 (in Chinese) [毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令 2009 58 5784]
Catalog
Metrics
- Abstract views: 7016
- PDF Downloads: 494
- Cited By: 0