搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为

洪文鹏 兰景瑞 李浩然 李博宇 牛晓娟 李艳

引用本文:
Citation:

基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为

洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳

Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method

Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan
PDF
HTML
导出引用
  • 双金属纳米颗粒能够有效整合两种金属的物理和化学性质并同时表达每种金属的独特性质, 是提高光散射、光热转换、等离激元共振衰变和光子激发的重要材料. 基于单独纳米颗粒的研究可以避免实验研究过程中纳米颗粒之间的相互影响, 更能够有效分析入射光与纳米颗粒之间的相互作用. 本文采用时域有限差分法计算了等离激元双金属核壳纳米颗粒的光谱学性能和能量传递衰减过程中的磁场、电场及吸收功率分布, 以探讨其光谱吸收特性. 结果表明, 随着核芯粒径的增大, 共振波长红移, 当核芯粒径大于100 nm时, Ag@Pt双金属纳米颗粒吸收率高于纯金属纳米颗粒, 这是由于壳层与核芯金属材料之间强烈的屏蔽效应使入射光仅与外层原子相互作用发生共振. 同时, 相对于Pt壳层而言, Ag核芯等离激元衰减更快, 因此更多的能量转移到了Pt壳中, 使Pt壳表面的磁场、电场较为集中且吸收功率较大. 此外, Ag核芯中的能量更趋向于向邻近Pt壳转移, 表现为靠近Ag核芯的区域能量吸收更为集中. 本文为设计满足特定光谱响应需求的等离激元核壳结构双金属纳米颗粒提供了理论指导.
    The bimetallic nanoparticle can effectively integrate the physical and chemical properties of two metals and simultaneously exhibits the unique natures of each metal. It also serves as a good candidate for improving light scattering, photothermal conversion, plasmon resonance decay, and photon excitation. Investigating the optical properties of an individual nanoparticle can avoid the interaction between nanoparticles during experimental research, which allows us to more effectively analyze the interaction between the incident light and nanoparticles. In this work, the finite-difference time-domain method is used to study the spectral absorption characteristics of the plasmon bimetallic core-shell nanoparticles by calculating the spectroscopic properties, and also the distributions of the magnetic field, electric field, and absorption power during energy transmission and decaying. The results show that the resonance wavelength is red-shifted if the core diameter is increased. In addition, the absorption rate of Ag@Pt bimetallic nanoparticles is higher than that of pure Ag@Ag nanoparticles when the core diameter is bigger than 100 nm. This is because the strong shielding effect between the shell metal material and the core metal material leads the incident light to interact only with the outer atoms, resulting in resonance. Meanwhile, the plasmon of the Ag core decays faster than that of the Pt shell and more energies are transferred to the Pt shell. As a result, the surface of the Pt shell shows more concentrated magnetic and electric fields associated with an enlarged absorbing power. Moreover, the energy in the Ag core tends to transfer to the nearby Pt shell, which is characterized by the energy absorption in the Pt shell close to the Ag core, and is more concentrated. This paper provides theoretical guidance for designing plasmon bimetallic core-shell nanoparticles, thereby satisfying the demands for special spectral responses.
      通信作者: 李浩然, haoran@neepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52106195)和吉林省教育厅“十三五”科学技术研究规划项目(批准号: JJKH20200106KJ)资助的课题
      Corresponding author: Li Hao-Ran, haoran@neepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52106195) and the “13th Five-Year Plan” for Science and Technology Research of the Education Department of Jilin Province, China (Grant No. JJKH20200106KJ)
    [1]

    Cao C, Zhao Z Y, Zhang Y M, Peng S 2020 J. Phys. D: Appl. Phys. 53 265103Google Scholar

    [2]

    刘海舟, 喻小强, 李金磊, 徐凝, 周林, 朱嘉 2019 中国科学: 物理学 力学 天文学 49 17Google Scholar

    Liu H Z, Yu X Q, Li J L, Xu N, Zhou L, Zhu J 2019 Sci China: Phys. Mech. Astron. 49 17Google Scholar

    [3]

    Kunwar S, Pandit S, Jeong J H, Lee J 2020 Nano-Micro Lett. 12 91

    [4]

    任益弘, 朱君, 李娜, 王各, 娄健 2020 激光杂志 41 1Google Scholar

    Ren Y H, Zhu J, Li N, Wang G, Lou J 2020 Laser J. 41 1Google Scholar

    [5]

    Wang T M, Tang G H, Du M 2020 Appl. Therm. Eng. 173 115182Google Scholar

    [6]

    殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田 2021 70 024201Google Scholar

    Yin C, Lu C J, Da J, Zhang R G, Kan X F, Han Q B, Xu T 2021 Acta Phys. Sin. 70 024201Google Scholar

    [7]

    彭浩程, 葛成, 周婧, 陈鹏, 施毅, 张荣, 郑有炓 2020 光电子技术 40 176Google Scholar

    Peng H C, Ge C, Zhou J, Chen P, Shi Y, Zhang R, Zheng Y L 2020 Optoe. Technol. 40 176Google Scholar

    [8]

    Chen M J, He Y R, Wang X Z, Hu Y W 2018 Appl. Energy 211 735Google Scholar

    [9]

    Tunkara E, DeJarnette D, Saunders A E, Baldwin M, Otanicar T, Roberts K P 2019 Appl. Energy 252 113459Google Scholar

    [10]

    Yu X X, Xuan Y M 2018 Sol. Energy 160 200Google Scholar

    [11]

    刘兵, 宫辉力, 刘锐, 胡长文 2019 应用化学 36 939Google Scholar

    Liu B, Gong H L, Liu R, Hu C W 2019 Chin. J. Appl. Chem. 36 939Google Scholar

    [12]

    朱群志, 蒋瑜毅 2017 光散射学报 29 222Google Scholar

    Zhu Q Z, Jiang Y Y 2017 Chin. J. Light Scatt. 29 222Google Scholar

    [13]

    Manjavacas A, Liu J G, Kulkarni V, Nordlander P 2014 ACS Nano 8 7630Google Scholar

    [14]

    Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar

    [15]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 68 147304Google Scholar

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304Google Scholar

    [16]

    林丹丽, 董旭, 查刘生 2018 分析测试学报 37 599Google Scholar

    Lin D L, Dong X, Zha L S 2018 J. Instr. Anal. 37 599Google Scholar

    [17]

    Chavez S, Aslam U, Linic S 2018 ACS Energy Lett. 3 1590Google Scholar

    [18]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [19]

    Werner W S M, Glantschnig K, Ambroschdraxl C 2009 J. Phys. Chem. Ref. Data 38 1013Google Scholar

  • 图 1  Yee网格和电磁场分量分布

    Fig. 1.  Yee grid and electromagnetic field component distribution.

    图 2  Ag@Ag, Ag@Pt, Pt@Ag纳米颗粒结构示意图

    Fig. 2.  Structure diagrams of Ag@Ag, Ag@Pt, and Pt@Ag nanoparticles.

    图 3  模型验证

    Fig. 3.  Model validation.

    图 4  壳层厚度为2 nm时不同核芯粒径纳米颗粒的吸收、散射和消光分数 (a) R = 10 nm, (b) R = 30 nm和(c) R = 50 nm的Ag@Ag纳米颗粒; (d) R = 10 nm, (e) R = 30 nm和(f) R = 50 nm的Ag@Pt纳米颗粒

    Fig. 4.  Absorption, scattering, and extinction fraction of nanoparticles with a shell thickness of 2 nm and different core sizes: Ag@Ag nanoparticle with (a) R = 10 nm, (b) R = 30 nm, and (c) R = 50 nm; Ag@Pt nanoparticle with (d) R = 10 nm, (e) R = 30 nm, and (f) R = 50 nm.

    图 5  Ag@Ag, Pt@Pt, Ag@Pt纳米颗粒吸收率随壳层厚度的变化

    Fig. 5.  Shell thickness-resolved absorption rate of Ag@Ag, Pt@Pt, and Ag@Pt nanoparticles.

    图 6  壳层厚度为2 nm时不同核芯粒径纳米颗粒吸收功率分布 (a) R = 90 nm的Ag@Ag纳米颗粒; (b) R = 90 nm的Ag@Pt纳米颗粒; (c) R = 160 nm的Ag@Ag纳米颗粒; (d) R = 160 nm的Ag@Pt纳米颗粒

    Fig. 6.  Power absorption distributions of nanoparticles with a shell thickness of 2 nm and different core sizes: (a) Ag@Ag, (b) Ag@Pt nanoparticles with R = 90 nm; (c) Ag@Ag, (d) Ag@Pt nanoparticles with R = 160 nm.

    图 7  核芯粒径为20 nm时不同壳层厚度(0.5—4.0 nm)纳米颗粒光学特性 (a) Ag@Ag纳米颗粒吸收截面; (b) Ag@Ag纳米颗粒散射截面; (c) Ag@Pt纳米颗粒吸收截面; (d) Ag@Pt纳米颗粒散射截面

    Fig. 7.  Optical characteristics of nanoparticles with a core size of 20 nm and shell thickness ranging from 0.5 to 4.0 nm: (a) Absorption and (b) scattering cross-sections of Ag@Ag nanoparticle; (c) absorption and (d) scattering cross-section of Ag@Pt nanoparticle.

    图 8  不同波长处Ag@Pt纳米颗粒的磁场分布和电场分布 (a) λ = 321.467 nm时的磁场分布; (b) λ = 380.452 nm时的磁场分布; (c) λ = 321.467 nm时的电场分布; (d) λ = 380.452 nm时的电场分布

    Fig. 8.  Magnetic and electric fields distributions of Ag@Pt nanoparticle at different wavelengths: magnetic field distribution at (a) λ = 321.467 nm and (b) λ = 380.452 nm; electric field distribution at (c) λ = 321.467 nm and (d) λ = 380.452 nm.

    图 9  核芯粒径为20 nm时不同壳层厚度Ag@Pt纳米颗粒磁场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Fig. 9.  Magnetic field distributions of Ag@Pt nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 10  核芯粒径为20 nm时不同壳层厚度Ag@Pt纳米颗粒电场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Fig. 10.  Electric field distributions of Ag@Pt nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 11  核芯粒径为20 nm时不同壳层厚度纳米颗粒的核芯、壳层及整体吸收功率 (a) Ag@Ag纳米颗粒核芯吸收功率; (b) Ag@Ag纳米颗粒壳层吸收功率; (c) Ag@Ag纳米颗粒整体吸收功率; (d) Ag@Pt纳米颗粒核芯吸收功率; (e) Ag@Pt纳米颗粒壳层吸收功率; (f) Ag@Pt纳米颗粒整体吸收功率

    Fig. 11.  The core, shell, and total absorption power for nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) Core, (b) shell, and (c) total absorption power of Ag@Ag nanoparticle; (d) core, (e) shell, and (f) total absorption power of Ag@Pt nanoparticle.

    图 12  核芯粒径为20 nm时不同壳层厚度Ag@Pt纳米颗粒吸收功率分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Fig. 12.  Absorption power distributions of Ag@Pt nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 13  核芯粒径为20 nm时不同壳层厚度(0.5—4.0 nm)Pt@Ag纳米颗粒光学特性 (a) 吸收截面; (b) 散射截面

    Fig. 13.  Optical characteristics of Pt@Ag nanoparticles with a core size of 20 nm and shell thickness ranging from 0.5 to 4.0 nm: (a) Absorption; (b) scattering cross-sections.

    图 14  核芯粒径为20 nm时不同壳层厚度Pt@Ag纳米颗粒磁场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Fig. 14.  Magnetic field distributions of Pt@Ag nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 15  核芯粒径为20 nm时不同壳层厚度Pt@Ag纳米颗粒电场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Fig. 15.  Electric field distributions of Pt@Ag nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 16  核芯粒径为20 nm时不同壳层厚度Pt@Ag纳米颗粒吸收功率分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Fig. 16.  Absorption power distributions of Pt@Ag nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    表 1  不同核芯粒径纳米颗粒吸收率

    Table 1.  Absorption rates of nanoparticles with different core diameters.

    粒径Ag@AgPt@PtAg@Pt
    1099.3538898.8384299.10692
    2096.7442994.4293496.2321
    3091.1389385.9607690.56968
    4082.3591374.5675381.94677
    5071.2331662.3876271.04794
    6059.4561851.0363359.38077
    7048.7419141.2853448.67587
    8039.9593533.4164639.92148
    9033.3699927.5867833.36847
    10028.5894823.506428.66334
    11025.1795420.7208725.32529
    12022.6852118.7673322.89612
    13020.7965717.3177121.04747
    14019.3116316.1914319.58624
    15018.1305415.2855618.40958
    16017.1957214.5571217.47313
    17016.4797213.9706116.74523
    18015.9453113.5124216.203
    19015.5569413.1683415.81046
    20015.2810112.9229815.53383
    下载: 导出CSV
    Baidu
  • [1]

    Cao C, Zhao Z Y, Zhang Y M, Peng S 2020 J. Phys. D: Appl. Phys. 53 265103Google Scholar

    [2]

    刘海舟, 喻小强, 李金磊, 徐凝, 周林, 朱嘉 2019 中国科学: 物理学 力学 天文学 49 17Google Scholar

    Liu H Z, Yu X Q, Li J L, Xu N, Zhou L, Zhu J 2019 Sci China: Phys. Mech. Astron. 49 17Google Scholar

    [3]

    Kunwar S, Pandit S, Jeong J H, Lee J 2020 Nano-Micro Lett. 12 91

    [4]

    任益弘, 朱君, 李娜, 王各, 娄健 2020 激光杂志 41 1Google Scholar

    Ren Y H, Zhu J, Li N, Wang G, Lou J 2020 Laser J. 41 1Google Scholar

    [5]

    Wang T M, Tang G H, Du M 2020 Appl. Therm. Eng. 173 115182Google Scholar

    [6]

    殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田 2021 70 024201Google Scholar

    Yin C, Lu C J, Da J, Zhang R G, Kan X F, Han Q B, Xu T 2021 Acta Phys. Sin. 70 024201Google Scholar

    [7]

    彭浩程, 葛成, 周婧, 陈鹏, 施毅, 张荣, 郑有炓 2020 光电子技术 40 176Google Scholar

    Peng H C, Ge C, Zhou J, Chen P, Shi Y, Zhang R, Zheng Y L 2020 Optoe. Technol. 40 176Google Scholar

    [8]

    Chen M J, He Y R, Wang X Z, Hu Y W 2018 Appl. Energy 211 735Google Scholar

    [9]

    Tunkara E, DeJarnette D, Saunders A E, Baldwin M, Otanicar T, Roberts K P 2019 Appl. Energy 252 113459Google Scholar

    [10]

    Yu X X, Xuan Y M 2018 Sol. Energy 160 200Google Scholar

    [11]

    刘兵, 宫辉力, 刘锐, 胡长文 2019 应用化学 36 939Google Scholar

    Liu B, Gong H L, Liu R, Hu C W 2019 Chin. J. Appl. Chem. 36 939Google Scholar

    [12]

    朱群志, 蒋瑜毅 2017 光散射学报 29 222Google Scholar

    Zhu Q Z, Jiang Y Y 2017 Chin. J. Light Scatt. 29 222Google Scholar

    [13]

    Manjavacas A, Liu J G, Kulkarni V, Nordlander P 2014 ACS Nano 8 7630Google Scholar

    [14]

    Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar

    [15]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 68 147304Google Scholar

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304Google Scholar

    [16]

    林丹丽, 董旭, 查刘生 2018 分析测试学报 37 599Google Scholar

    Lin D L, Dong X, Zha L S 2018 J. Instr. Anal. 37 599Google Scholar

    [17]

    Chavez S, Aslam U, Linic S 2018 ACS Energy Lett. 3 1590Google Scholar

    [18]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [19]

    Werner W S M, Glantschnig K, Ambroschdraxl C 2009 J. Phys. Chem. Ref. Data 38 1013Google Scholar

  • [1] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码.  , 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理.  , 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射.  , 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [4] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性.  , 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [5] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211719
    [6] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化.  , 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射.  , 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [8] 张宇文, 邓永和, 文大东, 赵鹤平, 高明. Al原子在Ni基衬底表面的扩散及团簇的形成.  , 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [9] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控.  , 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [10] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶.  , 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [11] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射.  , 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [12] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性.  , 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [13] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [14] 刘震, 王玉晓, 宋瑛林, 张学如. 纳米表面二维周期半圆凹槽增强硅薄膜太阳能电池光吸收.  , 2013, 62(16): 167801. doi: 10.7498/aps.62.167801
    [15] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池.  , 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [16] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [17] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究.  , 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [18] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究.  , 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [19] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响.  , 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [20] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能.  , 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
计量
  • 文章访问数:  5000
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-06-18
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map