-
Spin-orbit interaction of light in metasurface is investigated in this paper. We theoretically analyze the transfromation of circularly and linearly polarized light by metasurface with Jones matrix. The results indicate that the interaction of light with spatially inhomogeneous and anisotropic metasurface leads to a coupling of spin-orbital angular momentum. The nanostructrues of metasurfaces are arranged at a definite rate of rotation, which induces an additional space-variant geometrical phase (i.e., Pancharatnam-Berry phase). The Pancharatnam-Berry phase is dependent on the polarization handedness of the incident wave. This characteristic can result in spin-dependent split. A left/right-circular polarized beam is transfromed into a right/left-circular polarized vortex beam by the metasurfaces. In the convertion process, the sign of spin angular momentum of photons is inversed. At the same time, each photon can acquire orbital angular momentum from the inhomogeneous and anisotropic media. The case that a linearly polarized beam inputs the metasurfaces also is considered. A linearly polarized wave can be regarded as the linear superposition of left-circular and right-circular polarized wave. The two circularly plarized components are respectively converted into circularly polarized vortex beam with reverse polarization handedness. The coherent superposition of the two output components forms a cylindrical vector beam. Finally, we adopt the combination of a metasurface and spiral phase plate to verify the theoretical results. The vortex phase can be eliminated by the spiral phase plate when a left-circular polarized light is input, while topological charge of vortex phase will increase when a right-circular polarized light is input. For the case of inputting linearly polarized beam, one of the two outputing circularly polarized components can be eliminated by the helical phase through using the spiral phase plate, while the topological charge of another component increases. It results in the fact that the intensity pattern splits into two parts. The central part does not have helical phase, while the ambient ring-shaped intensity has helical phase. In order to judge the polarization handedness of output wave, the Stokes parameter S3 is measured by inserting a Glan laser polarizer and a quarter wave plate behind the spiral phase plate. The experimental results are in good agreement with theoretical analyses. These results are helpful for understanding the manipulation of light with metasurface.
-
Keywords:
- spin-orbit interaction /
- vortex beam /
- vector beam
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905
[3] Zhao Y, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901
[4] Luo H, Ren Z, Shu W, Li F 2007 Appl. Phys. A 87 245
[5] Li L, Wang J, Du H, Wang J, Qu S 2015 Chin. Phys. B 24 064201
[6] Yu N, Capasso F 2014 Nature Mater. 13 139
[7] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1289
[8] Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33
[9] Niv A, Biener G, Kleiner V, Hasman E 2003 Opt. Lett. 28 510
[10] Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933
[11] Brasselet E, Gervinskas G, Seniutinas G, Juodkazis S 2013 Phys. Rev. Lett. 111 193901
[12] Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803
[13] Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572
[14] Wang X, Ding J, Ni W, Guo C, Wang H 2007 Opt. Lett. 32 3549
[15] Cai Y, Lin Q, Eyyuboğlu H T, Baykal Y 2008 Opt. Express 16 7665
[16] Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 60 094204]
[17] Dai H, Liu Y, Luo D, Sun X 2011 Opt. Lett. 36 1617
[18] Chen H, Hao J, Zhang B, Xu J, Ding J, Wang H 2011 Opt. Lett. 36 3137
[19] Deng D, Chen C, Zhao X 2012 Appl. Phys. B 110 433
[20] Qian X, Zhu W, Rao R 2015 Chin. Phys. B 24 044201
[21] Zhan Q W 2009 Adv. Opt. Photon. 1 1
[22] Wang Z, Zhang N, Yuan X 2011 Opt. Express 19 482
[23] Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101
[24] Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110
[25] Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207
[26] Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 63 094203]
[27] Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S 2014 Appl. Phys. Lett. 105 151101
[28] Milione G, Sztul H I, Nolan D A, Alfano R R 2011 Phys. Rev. Lett. 98 053601
[29] Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801
[30] Niv A, Gorodetski Y, Kleiner V, Hasman E 2008 Opt. Lett. 33 2910
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905
[3] Zhao Y, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901
[4] Luo H, Ren Z, Shu W, Li F 2007 Appl. Phys. A 87 245
[5] Li L, Wang J, Du H, Wang J, Qu S 2015 Chin. Phys. B 24 064201
[6] Yu N, Capasso F 2014 Nature Mater. 13 139
[7] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1289
[8] Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33
[9] Niv A, Biener G, Kleiner V, Hasman E 2003 Opt. Lett. 28 510
[10] Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933
[11] Brasselet E, Gervinskas G, Seniutinas G, Juodkazis S 2013 Phys. Rev. Lett. 111 193901
[12] Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803
[13] Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572
[14] Wang X, Ding J, Ni W, Guo C, Wang H 2007 Opt. Lett. 32 3549
[15] Cai Y, Lin Q, Eyyuboğlu H T, Baykal Y 2008 Opt. Express 16 7665
[16] Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 60 094204]
[17] Dai H, Liu Y, Luo D, Sun X 2011 Opt. Lett. 36 1617
[18] Chen H, Hao J, Zhang B, Xu J, Ding J, Wang H 2011 Opt. Lett. 36 3137
[19] Deng D, Chen C, Zhao X 2012 Appl. Phys. B 110 433
[20] Qian X, Zhu W, Rao R 2015 Chin. Phys. B 24 044201
[21] Zhan Q W 2009 Adv. Opt. Photon. 1 1
[22] Wang Z, Zhang N, Yuan X 2011 Opt. Express 19 482
[23] Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101
[24] Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110
[25] Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207
[26] Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 63 094203]
[27] Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S 2014 Appl. Phys. Lett. 105 151101
[28] Milione G, Sztul H I, Nolan D A, Alfano R R 2011 Phys. Rev. Lett. 98 053601
[29] Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801
[30] Niv A, Gorodetski Y, Kleiner V, Hasman E 2008 Opt. Lett. 33 2910
Catalog
Metrics
- Abstract views: 7511
- PDF Downloads: 375
- Cited By: 0