Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration

Lü Gang Cao Xue-Cheng Qin Yu-Feng Wang Lin-Hui Li Gui-Hua Gao Feng Sun Feng-Wei Zhang Hong

Citation:

Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration

Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In comparison with uniformly magnetized states, vortex structures demonstrate a rich frequency spectrum of spin-wave (SW) excitations. However, a detailed theoretical description of the magnetic modes is generally still a challenge due to the difficulty of analytic calculation, except for the well-defined symmetric circular states. In contrast, the method of micromagnetic simulations combined with Fourier analysis is shown to be very powerful for gaining insight into the nature of magnetic excitation modes. Vortex excitation modes have been reported to be directly influenced by the geometric symmetry of the elements and/or the nature of the initial perturbation of pulse field. In order to understand how the reduced symmetry affects the vortex SW modes, we perform the micromagnetic simulations on vortex modes excited in a submicron-sized thin ellipse. In order to excite the spin-wave modes, a short in-plane Gaussian field pulse is applied along the short axis direction. After the pulse, the off-centered vortex core moves following an elliptical trajectory around its equilibrium position. Simulations provide the time evolution of the local magnetizations (at each discretization point) and dynamics of the spatially averaged magnetization. To determine the mode frequencies, the spectrum is obtained from the average magnetization through Fourier transformation from time domain the frequency domain. By means of Fourier analysis, a variety of azimuthal SW modes can be observed in the excitation spectrum. The ellipse in single vortex state has a twofold rotational symmetry with a rotation of πup around the z-axis (out-of plane) and can be described by the C2 group. The observed azimuthal modes can be divided into two categories according to their symmetry. Two modes occur alternately with increasing azimuthal number, indicating that the magnetic excitation modes remain to keep the symmetry of the ellipse structure. Their frequencies are found to increase linearly with the azimuthal index number. An increase of the SW frequency with increasing number of nodal planes is rather well known, which results from the competition between exchange and dipolar energy terms. According to the temporal evolution of the ellipse's spatially averaged energy densities, our micromagnetic simulation shows that the average exchange energy is significantly higher than the magnetostatic energy, suggesting that the exchange interaction plays a more important role in the excitation modes. The exchange energy density is mainly focused on the core origin while the largest contribution of the magnetostatic energy is distributed near the long axis. Thus, we can conclude that the exchange interaction provides the principal contribution to the vortex energy in such small ellipses with a single vortex state, resulting in the increasing frequency versus the azimuthal number, that is observed.
      Corresponding author: Zhang Hong, zhanghong@sdau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.51302157).
    [1]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [2]

    Acremann Y, Back C H, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H 2000 Science 290 492

    [3]

    Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H, Fukamichi K 2002 J. Appl. Phys. 91 8037

    [4]

    Guslienko K Y, Scholz W, Chantrell R W, Novosad V 2005 Phys. Rev. B 71 144407

    [5]

    Park J P, Eames P, Engebretson D M, Berezovsky J, Crowell P A 2003 Phys. Rev. B 67 020403

    [6]

    Buess M, Höllinger R, Haug T, Perzlmaier K, Krey U, Pescia D, Scheinfein M R, Weiss D, Back C H 2004 Phys. Rev. Lett. 93 077207

    [7]

    Novosad V, Grimsditch M, Guslienko K Y, Vavassori P, Otani Y, Bader S D 2002 Phys. Rev. B 66 052407

    [8]

    Perzlmaier K, Buess M, Back C H, Demidov V E, Hillebrands B, Demokritov S O 2005 Phys. Rev. Lett. 94 057202

    [9]

    Park J P, Crowell P A 2005 Phys. Rev. Lett. 95 167201

    [10]

    Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stohr J, Padmore H A 2004 Science304 420

    [11]

    Hu C L, Liao L, Stamps R 2014 Chin. Phys. 23 127501

    [12]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [13]

    Yan M, Leaf G, Kaper H, Camley R, Grimsditch M 2006 Phys. Rev. B 73 014425

    [14]

    Zhu X, Liu Z, Metlushko V, Grutter P, Freeman M R 2005 Phys. Rev. B 71 180408

    [15]

    Kawada Y, Naganuma H, Demiray A S, Oogane M, Ando Y 2014 Appl. Phys. Lett. 105 052407

    [16]

    Guslienko K Y, Novosad V, Otani Y, Shima H, Fukamichi K 2001 Phys. Rev. B 65 024414

    [17]

    Shibata J, Shigeto K, Otani Y 2003 Phys. Rev. B 67 224404

    [18]

    Zhang H, Liu Y W, Yan M, Riccardo Hertel 2010 IEEE Transactions on Magnetics 2010 46 1675

    [19]

    Guslienko K Y, Buchanan K S, Bader S D, Novosad V 2005 Appl. Phys. Lett. 86 223112

    [20]

    Montoncello F, Giovannini L, Nizzoli F 2009 J. Appl. Phys. 105 07E304

    [21]

    Buchanan K S, Roy P E, Grimsditch M, Fradin F Y, Guslienko K Y, Bader S D, Novosad V 2005 Nature. Phys. 1 172

    [22]

    Buchanan K S, Roy P E, Fradin F Y, Guslienko K Y, Grimsditch M, Bader S D, Novosad V 2006 J. Appl. Phys. 99 08C707

    [23]

    Ivanov B A, Schnitzer H J, Mertens F G, Wysin G M 1998 Phys. Rev. B 58 8464

    [24]

    Giovannini L, Montoncello F, Nizzoli F, Gubbiotti G, Carlotti G, Okuno T, Shinjo T, Grimsditch M 2004 Phys. Rev. B 70 172404

    [25]

    Xie K X, Lin W W, Zhang P, Sang H 2014 Appl. Phys. Lett. 105 102402

    [26]

    Yan M, Hertel R, Schneider C M 2007 Phys. Rev. B 76 094407

    [27]

    Lv G, Zhang H, Cao X C, Gao F, Liu Y W 2013 Appl. Phys. Lett. 103 252404

    [28]

    Guslienko K Y, Slavin A N, Tiberkevich V, Kim S K 2008 Phys. Rev. Lett. 101 247203

  • [1]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [2]

    Acremann Y, Back C H, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H 2000 Science 290 492

    [3]

    Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H, Fukamichi K 2002 J. Appl. Phys. 91 8037

    [4]

    Guslienko K Y, Scholz W, Chantrell R W, Novosad V 2005 Phys. Rev. B 71 144407

    [5]

    Park J P, Eames P, Engebretson D M, Berezovsky J, Crowell P A 2003 Phys. Rev. B 67 020403

    [6]

    Buess M, Höllinger R, Haug T, Perzlmaier K, Krey U, Pescia D, Scheinfein M R, Weiss D, Back C H 2004 Phys. Rev. Lett. 93 077207

    [7]

    Novosad V, Grimsditch M, Guslienko K Y, Vavassori P, Otani Y, Bader S D 2002 Phys. Rev. B 66 052407

    [8]

    Perzlmaier K, Buess M, Back C H, Demidov V E, Hillebrands B, Demokritov S O 2005 Phys. Rev. Lett. 94 057202

    [9]

    Park J P, Crowell P A 2005 Phys. Rev. Lett. 95 167201

    [10]

    Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stohr J, Padmore H A 2004 Science304 420

    [11]

    Hu C L, Liao L, Stamps R 2014 Chin. Phys. 23 127501

    [12]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [13]

    Yan M, Leaf G, Kaper H, Camley R, Grimsditch M 2006 Phys. Rev. B 73 014425

    [14]

    Zhu X, Liu Z, Metlushko V, Grutter P, Freeman M R 2005 Phys. Rev. B 71 180408

    [15]

    Kawada Y, Naganuma H, Demiray A S, Oogane M, Ando Y 2014 Appl. Phys. Lett. 105 052407

    [16]

    Guslienko K Y, Novosad V, Otani Y, Shima H, Fukamichi K 2001 Phys. Rev. B 65 024414

    [17]

    Shibata J, Shigeto K, Otani Y 2003 Phys. Rev. B 67 224404

    [18]

    Zhang H, Liu Y W, Yan M, Riccardo Hertel 2010 IEEE Transactions on Magnetics 2010 46 1675

    [19]

    Guslienko K Y, Buchanan K S, Bader S D, Novosad V 2005 Appl. Phys. Lett. 86 223112

    [20]

    Montoncello F, Giovannini L, Nizzoli F 2009 J. Appl. Phys. 105 07E304

    [21]

    Buchanan K S, Roy P E, Grimsditch M, Fradin F Y, Guslienko K Y, Bader S D, Novosad V 2005 Nature. Phys. 1 172

    [22]

    Buchanan K S, Roy P E, Fradin F Y, Guslienko K Y, Grimsditch M, Bader S D, Novosad V 2006 J. Appl. Phys. 99 08C707

    [23]

    Ivanov B A, Schnitzer H J, Mertens F G, Wysin G M 1998 Phys. Rev. B 58 8464

    [24]

    Giovannini L, Montoncello F, Nizzoli F, Gubbiotti G, Carlotti G, Okuno T, Shinjo T, Grimsditch M 2004 Phys. Rev. B 70 172404

    [25]

    Xie K X, Lin W W, Zhang P, Sang H 2014 Appl. Phys. Lett. 105 102402

    [26]

    Yan M, Hertel R, Schneider C M 2007 Phys. Rev. B 76 094407

    [27]

    Lv G, Zhang H, Cao X C, Gao F, Liu Y W 2013 Appl. Phys. Lett. 103 252404

    [28]

    Guslienko K Y, Slavin A N, Tiberkevich V, Kim S K 2008 Phys. Rev. Lett. 101 247203

  • [1] Huang Ming-Xian, Hu Wen-Bin, Bai Fei-Ming. Surface acoustic wave-spin wave coupling and magneto-acoustic nonreciprocal devices. Acta Physica Sinica, 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] Liu Xiang, Wang Xi-Guang, Li Zhi-Xiong, Guo Guang-Hua. Left-handed polarized spin waves induced by spin polarized electric currents in ferromagnetic domain walls. Acta Physica Sinica, 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [3] Qiang Jin, He Kai-Zhou, Liu Dong-Ni, Lu Qi-Hai, Han Gen-Liang, Song Yu-Zhe, Wang Xiang-Qian. Study of magnetic vortex spin wave mode in triangular structures. Acta Physica Sinica, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [4] Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong. Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler. Acta Physica Sinica, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [5] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [6] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [7] Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei. Local energy of magnetic vortex core reversal. Acta Physica Sinica, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [8] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] Zheng Yong-Lin, Wang Xiao-Xi, Ge Ze-Ling, Guo Hong-Li, Yan Gang-Feng, Dai Song-Hui, Zhu Xiao-Ling, Tian Xiao-Bin. Transmission and application of electron spin wave function in alternating ferromagnetic and nonmagnetic layers. Acta Physica Sinica, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [10] Hou Xiao-Juan, Yun Guo-Hong, Bai Yu-Hao, Bai Narsu, Zhou Wen-Ping. The eigenvalues of quantized spin waves and theeffect of the uniaxial anisotropy. Acta Physica Sinica, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [11] Jin Wei, Wan Zhen-Mao, Liu Yao-Wen. Nonlinear magnetization dynamics excited by the spin-transfer torque effect. Acta Physica Sinica, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [12] Pan Jing, Zhou Lan, Hu Jing-Guo. The magnetization of antiferrmagnetic layer and the spin wave in the system of the exchange bias. Acta Physica Sinica, 2009, 58(9): 6487-6493. doi: 10.7498/aps.58.6487
    [13] Pan Jing, Zhou Lan, Tao Yong-Chun, Hu Jing-Guo. Spin waves in ferromagnetic/antiferrmagnetic bilayers under the stress field. Acta Physica Sinica, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [14] Zhao Xing-Dong, Xie Zheng-Wei, Zhang Wei-Ping. Nonlinear spin waves in a Bose condensed atomic chain. Acta Physica Sinica, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [15] Jiang Jian-Jun, Zhang Song-Jun, Liu Yong-Jun. Effect of frustration on spin-wave excitation of the quasi-one-dimensional antiferromagnetic chain with asymmetrical sublattices. Acta Physica Sinica, 2006, 55(9): 4888-4892. doi: 10.7498/aps.55.4888
    [16] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
    [17] DAI SONG-TAO, LI ZHEN-YA. SPIN WAVES IN TRANSVERSE ISING FERRO-MAGNETIC FILMS. Acta Physica Sinica, 1990, 39(4): 639-648. doi: 10.7498/aps.39.639
    [18] ZHONG JIAN. SPIN WAVE SPECTRUM IN HEISENBERG ANTIFERRO-MAGNETIC SUPERLATTICES. Acta Physica Sinica, 1990, 39(3): 486-490. doi: 10.7498/aps.39.486
    [19] KUANG YU-PING, WENG SHI-CHUN. THE SPIN WAVE THEORY OF FERROMAGNETIC ANISOTROPY IN CUBIC CRYSTALS. Acta Physica Sinica, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] YU LUH. 铁磁金属的表面阻抗与自旋波共振. Acta Physica Sinica, 1964, 20(7): 607-623. doi: 10.7498/aps.20.607
Metrics
  • Abstract views:  5873
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2015
  • Accepted Date:  14 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map