搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr4+掺杂Li1.14Zn1.43SiO4透明微晶玻璃近红外宽带光谱特性

马红萍 刘平 杨清华 邓德刚

引用本文:
Citation:

Cr4+掺杂Li1.14Zn1.43SiO4透明微晶玻璃近红外宽带光谱特性

马红萍, 刘平, 杨清华, 邓德刚

Broad band infrared optical properties of Cr4+-doped Li1.14Zn1.43SiO4 transparent glass-ceramics

Ma Hong-Ping, Liu Ping, Yang Qing-Hua, Deng De-Gang
PDF
导出引用
  • 采用高温熔融法和热处理制备了Cr4+掺杂Li1.14Zn1.43SiO4微晶玻璃, 探讨了不同热处理温度下样品的物相、微观形貌及发光性能. 结果表明: 580℃热处理2h得到的微晶玻璃, Li1.14Zn1.43SiO4微晶的粒径约为5nm, 在808nm的二极管激发下, 可观察到中心波长位于1226nm, 半高宽为230nm的近红外宽带发射峰, 荧光寿命约为200.731.71s. 随着热处理温度的升高, Cr4+离子所处的晶体场环境发生了变化, 且可以观察到样品吸收光谱发生微弱的蓝移, 而荧光光谱发生少量的红移, 分析了晶体场环境变化对样品发光性能的影响.
    Cr4+-doped transparent Li1.14Zn1.43SiO4 glass-ceramics were prepared by high-temperature melting and subsequent heat-treatment, and the crystalline, microstructural, and luminescence properties of the products prepared by different-temperature heat-treatment were investigated. Results showed that the glass-ceramics heat-treated at 580 ℃ for 2 h contained nano crystallines of about 5 nm in size, and a broadband infrared emission centered at 1226nm with full width at half maximum of more than 230 nm and a decay time of about 200.07 s were observed by exciting with an 808 nm laser diode. Mean while, it is believed that the crystalline field environment of Cr4+ is changed with the increase of heat-treatment temperature, which results in blue shift and red shift of absorption and fluorescence spectra, respectively.
    • 基金项目: 国家自然科学基金(批准号: 61008042)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61008042).
    [1]

    Snitzer E, Woodcock R 1965 Appl. Phys. Lett. 6 45

    [2]

    Mears R, Reekie L, Poole S, Payne D 1986 Electron. Lett. 22 159

    [3]

    Mori A, Ohishi Y, Sudo S 1997 Electron. Lett. 33 863

    [4]

    Němec P, Frumar M 2002 J. Non-cryst. Solids 299-302 1018

    [5]

    Shen X, Nie Q H, X T F, G Y 2005 Acta Phys. Sin. 54 2379 (in Chinese) [沈祥, 聂秋华, 徐铁峰, 高媛 2005 54 2379]

    [6]

    Xu S Q, Yang Z M, Dai S X, Yang J H, Hu L L, Jiang Z H 2003 J. Alloys Comp. 313 311

    [7]

    Kuck S 2001 Appl. Phys. B 72 515

    [8]

    Petricevic V, Gayen S, Alfano R 1988 Appl. Phys. Lett. 53 2590

    [9]

    Kuck S, Petermann K, Pohlmann U, Huber G 1995 Phys. Rev. B 51 17323

    [10]

    Petricevic V, Gayen S, Alfano R 1989 Opt. Lett. 14 612

    [11]

    Lo C, Huang K, Chen J, Chuang C, Lai C, Huang S, Lin Y, Yeh P 2005 Opt. Lett. 30 129

    [12]

    Sharonov M, Bykov A, Owen S, Petricevic V, Alfano R, Beall G, Borrelli N 2004 J. Opt. Soc. Am. B Opt. Phys. 21 2046

    [13]

    Bykov A, Sharonov M, Petricevic V, Popovb I, Isaacs L, Steiner J, Alfano R 2006 J. Non-Crys. Solids 352 5508

    [14]

    Yamazaki H, Tanabe S P 2003 Amplifiers and their Applications Otaru, Japan, July 6, 2003 pWC1

    [15]

    Pinckney L, Beall G Proc SPIE 4452, Inorganic Optical Materials III Transition San Diego, Canada, November 2 2001 p93

    [16]

    Sakata S, Uedab N, Fujiia I, Kawazoe H 1994 J. Non-Crys. Solids 178 98

    [17]

    Caird J A, Payne T A, Staver P R, Ramponi A J, Chase L L 1988 J. Quant. Electron. 24 1077

    [18]

    Takahiro M, Masanori T, Hiromichi T, Kenji M 1997 J. Non-Crys. Solids 220 139

    [19]

    Jousseaume C, Vivien D, Kahn-Harari A, Malkin B 2003 Opt. Mater. 24 143

    [20]

    Zhu S X, Yang B C, Lin Y J, Pan P C, Zhu J K 1992 Acta Phys. Sin. 41 1234 (in Chinese) [祝生祥, 杨宝成, 林远济, 潘佩聪, 祝继康 1992 41 1234]

    [21]

    Peng X, Tanabe S 2002 Opt. Mater. 20 63

    [22]

    Henderson B, Imbusch G F 1989 Optical Spectroscopy of Inorganic Solids (Oxford: Clarendon Press) p51

    [23]

    Lever A B P 1984 Inorganic Electronic Spectroscopy (Amsterdam: Elsevier Press) p115

    [24]

    Sugano S, Tanabe Y, Kamimura H 1970 Multiplets of Transition-Metal Ions in Crystals (New York and London: Academic Press) p521

    [25]

    Zhuang Y, Teng Y, Luo J, Zhu B, Chi Y, Wu E, Zeng H, Qiu J 2009 Appl. Phys. Lett. 95 111913

    [26]

    Jousseaume C, Vivien D, Kahn-Harari A, Derouet J 2003 J. Appl. Phys. 93 600

    [27]

    Cao G X, Hu H F, Zhou S 2002 Acta Opt. Sinica 22 226 (in Chinese) [曹国喜, 胡和方, 周世 2002 光学学报 22 226]

    [28]

    Zhou S F 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [周时凤 2008 博士学位论文 (杭州: 浙江大学) ]

    [29]

    Duan X L, Yuan D R, Cheng X F, Wang Z M, Sun Z H, Luan C N, Xu D, Lv M K 2004 Opt. Mater. 25 69

    [30]

    Calvez L, Ma H L, Lucas J, Zhang X H 2007 Adv. Mater. 19 12

  • [1]

    Snitzer E, Woodcock R 1965 Appl. Phys. Lett. 6 45

    [2]

    Mears R, Reekie L, Poole S, Payne D 1986 Electron. Lett. 22 159

    [3]

    Mori A, Ohishi Y, Sudo S 1997 Electron. Lett. 33 863

    [4]

    Němec P, Frumar M 2002 J. Non-cryst. Solids 299-302 1018

    [5]

    Shen X, Nie Q H, X T F, G Y 2005 Acta Phys. Sin. 54 2379 (in Chinese) [沈祥, 聂秋华, 徐铁峰, 高媛 2005 54 2379]

    [6]

    Xu S Q, Yang Z M, Dai S X, Yang J H, Hu L L, Jiang Z H 2003 J. Alloys Comp. 313 311

    [7]

    Kuck S 2001 Appl. Phys. B 72 515

    [8]

    Petricevic V, Gayen S, Alfano R 1988 Appl. Phys. Lett. 53 2590

    [9]

    Kuck S, Petermann K, Pohlmann U, Huber G 1995 Phys. Rev. B 51 17323

    [10]

    Petricevic V, Gayen S, Alfano R 1989 Opt. Lett. 14 612

    [11]

    Lo C, Huang K, Chen J, Chuang C, Lai C, Huang S, Lin Y, Yeh P 2005 Opt. Lett. 30 129

    [12]

    Sharonov M, Bykov A, Owen S, Petricevic V, Alfano R, Beall G, Borrelli N 2004 J. Opt. Soc. Am. B Opt. Phys. 21 2046

    [13]

    Bykov A, Sharonov M, Petricevic V, Popovb I, Isaacs L, Steiner J, Alfano R 2006 J. Non-Crys. Solids 352 5508

    [14]

    Yamazaki H, Tanabe S P 2003 Amplifiers and their Applications Otaru, Japan, July 6, 2003 pWC1

    [15]

    Pinckney L, Beall G Proc SPIE 4452, Inorganic Optical Materials III Transition San Diego, Canada, November 2 2001 p93

    [16]

    Sakata S, Uedab N, Fujiia I, Kawazoe H 1994 J. Non-Crys. Solids 178 98

    [17]

    Caird J A, Payne T A, Staver P R, Ramponi A J, Chase L L 1988 J. Quant. Electron. 24 1077

    [18]

    Takahiro M, Masanori T, Hiromichi T, Kenji M 1997 J. Non-Crys. Solids 220 139

    [19]

    Jousseaume C, Vivien D, Kahn-Harari A, Malkin B 2003 Opt. Mater. 24 143

    [20]

    Zhu S X, Yang B C, Lin Y J, Pan P C, Zhu J K 1992 Acta Phys. Sin. 41 1234 (in Chinese) [祝生祥, 杨宝成, 林远济, 潘佩聪, 祝继康 1992 41 1234]

    [21]

    Peng X, Tanabe S 2002 Opt. Mater. 20 63

    [22]

    Henderson B, Imbusch G F 1989 Optical Spectroscopy of Inorganic Solids (Oxford: Clarendon Press) p51

    [23]

    Lever A B P 1984 Inorganic Electronic Spectroscopy (Amsterdam: Elsevier Press) p115

    [24]

    Sugano S, Tanabe Y, Kamimura H 1970 Multiplets of Transition-Metal Ions in Crystals (New York and London: Academic Press) p521

    [25]

    Zhuang Y, Teng Y, Luo J, Zhu B, Chi Y, Wu E, Zeng H, Qiu J 2009 Appl. Phys. Lett. 95 111913

    [26]

    Jousseaume C, Vivien D, Kahn-Harari A, Derouet J 2003 J. Appl. Phys. 93 600

    [27]

    Cao G X, Hu H F, Zhou S 2002 Acta Opt. Sinica 22 226 (in Chinese) [曹国喜, 胡和方, 周世 2002 光学学报 22 226]

    [28]

    Zhou S F 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [周时凤 2008 博士学位论文 (杭州: 浙江大学) ]

    [29]

    Duan X L, Yuan D R, Cheng X F, Wang Z M, Sun Z H, Luan C N, Xu D, Lv M K 2004 Opt. Mater. 25 69

    [30]

    Calvez L, Ma H L, Lucas J, Zhang X H 2007 Adv. Mater. 19 12

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟.  , 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 李文豪, 谢玉清, 石海征, 芦鹏飞, 任晶. 稀土离子在KMnF3纳米晶复合玻璃中的微观分布机理.  , 2022, 71(8): 084205. doi: 10.7498/aps.71.20211953
    [3] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究.  , 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [4] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器.  , 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [5] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究.  , 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [6] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响.  , 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [7] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [8] 李永进, 宋志国, 李臣, 万荣华, 邱建备, 杨正文, 尹兆益, 王雪, 王齐, 周大成, 杨勇. 结构自还原效应对铋掺碱土金属硅磷铝硼玻璃超宽带近红外发光的影响.  , 2013, 62(11): 117801. doi: 10.7498/aps.62.117801
    [9] 刘自军, 杨旅云, 陈乔乔, 余阳, 戴能利, 李进延. 用于可见照明的超宽带黄色荧光玻璃.  , 2012, 61(23): 237803. doi: 10.7498/aps.61.237803
    [10] 周大成, 刘志亮, 宋志国, 杨正文, 何禧佳, 王荣飞, 焦清, 邱建备. 铋离子掺杂RO-Al2O3-SiO2玻璃近红外超宽带发光性质.  , 2012, 61(12): 127802. doi: 10.7498/aps.61.127802
    [11] 王岩山, 蒋作文, 栾怀训, 张泽学, 彭景刚, 杨旅云, 李进延, 戴能利. 双包层掺Bi光纤的制备及其光谱特性研究.  , 2012, 61(8): 084215. doi: 10.7498/aps.61.084215
    [12] 肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新. Nd3+:Gd3Sc2Al3O12 晶场能级及拟合.  , 2010, 59(10): 7306-7313. doi: 10.7498/aps.59.7306
    [13] 肖思国, 阳效良, 丁建文. Er3+/Yb3+掺杂氟硅铅酸盐微晶玻璃的上转换发光.  , 2009, 58(10): 6858-6862. doi: 10.7498/aps.58.6858
    [14] 张约品, 夏海平, 张新民, 王金浩, 章践立, 姜 淳. Er, Yb:YAG微晶玻璃发光特性的研究.  , 2007, 56(7): 4207-4212. doi: 10.7498/aps.56.4207
    [15] 王雪俊, 夏海平. GeO2-Bi2O3-MOx(MOx=WO3, BaO)玻璃近红外超宽带发光的研究.  , 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [16] 王雪俊, 夏海平. Bi离子掺杂GeO2-Al2O3-M(M=Na2O,BaO,Y2O3)玻璃的光学性质.  , 2006, 55(10): 5263-5267. doi: 10.7498/aps.55.5263
    [17] 余 华, 孙 健, 刘宝荣, 宋 杰, 赵丽娟, 许京军. Eu3+离子在微晶玻璃研究中的探针作用.  , 2006, 55(11): 6152-6156. doi: 10.7498/aps.55.6152
    [18] 孟 婕, 赵丽娟, 余 华, 唐莉勤, 梁 沁, 禹宣伊, 唐柏权, 苏 静, 许京军. 微晶结构对氟氧化物玻璃陶瓷发光特性的影响.  , 2005, 54(3): 1442-1446. doi: 10.7498/aps.54.1442
    [19] 谢林华, 丘 岷. MgF2:Mn2+光谱、超精细常数和局部结构的关联.  , 2005, 54(12): 5845-5848. doi: 10.7498/aps.54.5845
    [20] 殷春浩, 韩 奎, 叶世旺. GeFe2O4晶体的基态能级和零场分裂参量.  , 2003, 52(9): 2280-2283. doi: 10.7498/aps.52.2280
计量
  • 文章访问数:  6353
  • PDF下载量:  1066
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-04
  • 修回日期:  2013-05-29
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map