Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Full-vectorial analysis of a polarization demultiplexer using a microring resonator with silicon-based slot waveguides

Xiao Jin-Biao Luo Hui Xu Yin Sun Xiao-Han

Citation:

Full-vectorial analysis of a polarization demultiplexer using a microring resonator with silicon-based slot waveguides

Xiao Jin-Biao, Luo Hui, Xu Yin, Sun Xiao-Han
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photonic integrated circuits (PICs) based on silicon-on-insulator (SOI) platform with the advantages of high-index-contrast and CMOS-compatible process can efficiently reduce the component sizes and densely integrate them at a chip scale. To meet the ever-increasing demand for the optical interconnect capacity, various multiplexing techniques have been used. However, it should still be proposed to effectively reduce the component size accompanied with the reasonable performance and wavelength division multiplexing (WDM) compatibility. To the best of our knowledge, there has no attempt so far to design a polarization demultiplexer based on a microring resonator in slot waveguide structures. In this paper, a compact silicon-based polarization demultiplexer is proposed, where two regular silicon-based waveguides are used as the input/output channels and a microring in slot waveguide structures is used as the polarization/wavelength-selective component. A full-vectorial finite-difference frequency-domain method is utilized to study the modal characteristics of the regular and slot silicon-based waveguides, where the effective indices and coupling for transverse magnetic (TM) and transverse electric (TE) modes are presented. With the unique modal characteristics of slot waveguides and the strong polarization-dependent features of microring resonator, we can show that the field distributions and the effective indices of the TM mode between the regular and slot waveguides are similar, while those of the TE mode show clearly different. As a result, the input TM mode outputs from the drop port at the resonant wavelength, while the input TE mode outputs from the through port directly with nearly neglected coupling, thus the two polarizations are separated efficiently. A three-dimensional finite-difference time-domain method is utilized to study the spectrum and transmission characteristics of the proposed device. From the results, a polarization demultiplexer with a radius of 3.489 m is achieved with the extinction ratio and insertion loss of ~ 26.12(36.67) dB and ~ 0.49(0.09) dB respectively for the TM(TE) mode at the wavelength of 1.55 m by carefully optimizing the key structural parameters. In addition, taking the fabrication errors into account during the practical process, the fabrication tolerances to the proposed device are analyzed in detail and the performance is assessed by the extinction ratio and insertion loss. For demonstrating the transmission characteristics of the designed polarization (de) multipexing (P-DEMUX) device, the evolution along the propagation distance of the input mode through the designed P-DEMUX is also presented. The present polarization demultiplexer is compatible with the WDM systems on-chip based on microring resonators and can be easily introduced into the WDM system to further increase the optical interconnect capacity.
      Corresponding author: Xiao Jin-Biao, jbxiao@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60978005), and the Jiangsu Provincial Natural Science Foundation, China (Grant No. BK20141120).
    [1]

    Vlasov Y A 2012 IEEE Commun. Mag. 50 s67

    [2]

    Kopp C, Bernabe S, Bakir B B, Fedeli J M, Orobtchouk R F, Porte S H, Zimmermann L, Tekin T 2011 IEEE J. Sel. Top. Quantum Electron. 17 498

    [3]

    Liu A S, Liao L, Chetrit Y, Hat B N, Rubin D, Panicca M 2010 IEEE J. Sel. Top. Quantum Electron. 16 23

    [4]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354

    [5]

    Deng L, Pang X D, Othman M B, Jensen J B, Zibar B, Yu X B, Liu D M, Monroy I T 2012 Opt. Express 20 4369

    [6]

    Sjdin M, Agrell E, Johannisson P, Lu G W, Andrekson P A, Karlsson M 2011 J. Lightwave Technol. 29 1219

    [7]

    Guan H, Novack A, Streshinsky M, Shi R, Fang Q, Lim A E J, Lo G Q, Tom B J, Hochberg M 2014 Opt. Express 22 2489

    [8]

    Dai D X, Wang Z, Bowers J E 2011 Opt. Letters 36 2590

    [9]

    Yu Y Y, Li X Y, Sun B, He K P 2015 Chin. Phys. B 24 068702

    [10]

    Yang B K, Shin S Y, Zhang D M 2009 IEEE Photonics Technol. Lett. 21 432

    [11]

    Dai D X, Wang Z, Peters J, Bowers J E 2012 IEEE Photonics Technol. Lett. 24 673

    [12]

    Gerosa R M, Biazoli C R, Cordeiro C, Matos C 2012 Opt. Express 20 28981

    [13]

    Ye W N, Xu D X, Janz S, Waldron P, Cheben P, Tarr N G 2007 Opt. Letters 32 1492

    [14]

    Xiong F, Zhong W D, Kim H 2012 J. Lightwave Technol. 30 2329

    [15]

    Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309

    [16]

    Guha B, Kyotoku B B C, Lipson M 2010 Opt. Express 18 3487

    [17]

    Bogaerts W, DE H P, Van V T, De K V, Kumar S S, Claes T, Dumon P, Bienstman P, Van D T, Baeta R 2012 Laser Photonics Rev. 6 47

    [18]

    Xiang X Y, Wang K R, Yuan J H, Jin B Y, Sang X Z, Yu C X 2014 Chin. Phys. B 23 034206

    [19]

    Ding R, Liu Y, Li Q, Xuan Z, Ma Y J, Yang Y S, Lim A E J, Lo G Q, Bergman K, Baehr J T, Hochberg M2014 IEEE Photonics J. 6 1

    [20]

    Park S, Kim K J, Kim I G, Kim G 2011 Opt. Express 19 13531

    [21]

    Cai X L, Huang D X, Zhang X L 2006 Opt. Express 14 11304

    [22]

    Almeida V R, Xu Q F, Barrios C A, Lipson M 2004 Opt. Letters 29 1209

    [23]

    Nacer S, Aissat A 2012 Opt. Quantum Electron. 44 35

    [24]

    Xiao J B, Liu X, Sun X H 2008 Jpn. J. Appl. Phys. 47 3748

    [25]

    Saitoh K, Koshiba M 2009 Opt. Express 17 19225

    [26]

    Xu Y, Xiao J B, Sun X H 2014 J. Lightwave Technol. 32 4282

    [27]

    Xu Y, Xiao J B, Sun X H 2015 IEEE Photonics Technol. Lett. 27 654

    [28]

    Xiao J B, Xu Y, Wang J Y, Sun X H 2014 Appl. Opt. 53 2390

    [29]

    Ishizaka Y, Saitoh K, Koshiba M 2013 IEEE Photonics J. 5 6601809

    [30]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [31]

    Xiao J B, Ni H X, Sun X H 2008 Opt. Letters 33 1848

    [32]

    Okamoto K 2010 Fundamentals of optical waveguides (San Diego: Academic Press) pp159-203

    [33]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [34]

    Sullivan D M 2013 Electromagnetic simulation using the FDTD method (New York: Wiley) pp85-96

    [35]

    Chew W C, Liu Q H 1996 J. Comput. Acoust. 4 341

  • [1]

    Vlasov Y A 2012 IEEE Commun. Mag. 50 s67

    [2]

    Kopp C, Bernabe S, Bakir B B, Fedeli J M, Orobtchouk R F, Porte S H, Zimmermann L, Tekin T 2011 IEEE J. Sel. Top. Quantum Electron. 17 498

    [3]

    Liu A S, Liao L, Chetrit Y, Hat B N, Rubin D, Panicca M 2010 IEEE J. Sel. Top. Quantum Electron. 16 23

    [4]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354

    [5]

    Deng L, Pang X D, Othman M B, Jensen J B, Zibar B, Yu X B, Liu D M, Monroy I T 2012 Opt. Express 20 4369

    [6]

    Sjdin M, Agrell E, Johannisson P, Lu G W, Andrekson P A, Karlsson M 2011 J. Lightwave Technol. 29 1219

    [7]

    Guan H, Novack A, Streshinsky M, Shi R, Fang Q, Lim A E J, Lo G Q, Tom B J, Hochberg M 2014 Opt. Express 22 2489

    [8]

    Dai D X, Wang Z, Bowers J E 2011 Opt. Letters 36 2590

    [9]

    Yu Y Y, Li X Y, Sun B, He K P 2015 Chin. Phys. B 24 068702

    [10]

    Yang B K, Shin S Y, Zhang D M 2009 IEEE Photonics Technol. Lett. 21 432

    [11]

    Dai D X, Wang Z, Peters J, Bowers J E 2012 IEEE Photonics Technol. Lett. 24 673

    [12]

    Gerosa R M, Biazoli C R, Cordeiro C, Matos C 2012 Opt. Express 20 28981

    [13]

    Ye W N, Xu D X, Janz S, Waldron P, Cheben P, Tarr N G 2007 Opt. Letters 32 1492

    [14]

    Xiong F, Zhong W D, Kim H 2012 J. Lightwave Technol. 30 2329

    [15]

    Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309

    [16]

    Guha B, Kyotoku B B C, Lipson M 2010 Opt. Express 18 3487

    [17]

    Bogaerts W, DE H P, Van V T, De K V, Kumar S S, Claes T, Dumon P, Bienstman P, Van D T, Baeta R 2012 Laser Photonics Rev. 6 47

    [18]

    Xiang X Y, Wang K R, Yuan J H, Jin B Y, Sang X Z, Yu C X 2014 Chin. Phys. B 23 034206

    [19]

    Ding R, Liu Y, Li Q, Xuan Z, Ma Y J, Yang Y S, Lim A E J, Lo G Q, Bergman K, Baehr J T, Hochberg M2014 IEEE Photonics J. 6 1

    [20]

    Park S, Kim K J, Kim I G, Kim G 2011 Opt. Express 19 13531

    [21]

    Cai X L, Huang D X, Zhang X L 2006 Opt. Express 14 11304

    [22]

    Almeida V R, Xu Q F, Barrios C A, Lipson M 2004 Opt. Letters 29 1209

    [23]

    Nacer S, Aissat A 2012 Opt. Quantum Electron. 44 35

    [24]

    Xiao J B, Liu X, Sun X H 2008 Jpn. J. Appl. Phys. 47 3748

    [25]

    Saitoh K, Koshiba M 2009 Opt. Express 17 19225

    [26]

    Xu Y, Xiao J B, Sun X H 2014 J. Lightwave Technol. 32 4282

    [27]

    Xu Y, Xiao J B, Sun X H 2015 IEEE Photonics Technol. Lett. 27 654

    [28]

    Xiao J B, Xu Y, Wang J Y, Sun X H 2014 Appl. Opt. 53 2390

    [29]

    Ishizaka Y, Saitoh K, Koshiba M 2013 IEEE Photonics J. 5 6601809

    [30]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [31]

    Xiao J B, Ni H X, Sun X H 2008 Opt. Letters 33 1848

    [32]

    Okamoto K 2010 Fundamentals of optical waveguides (San Diego: Academic Press) pp159-203

    [33]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [34]

    Sullivan D M 2013 Electromagnetic simulation using the FDTD method (New York: Wiley) pp85-96

    [35]

    Chew W C, Liu Q H 1996 J. Comput. Acoust. 4 341

  • [1] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu. Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications. Acta Physica Sinica, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [3] Liu Yu-Hang, Lin Tong, Li Shao-Bo, Yu Wen-Qi, Ma Xiang, Liang Xiao-Dong, Yun Bin-Feng. Reconfigurable optical filter based on microring resonator assisted by tunable Sagnac reflector. Acta Physica Sinica, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [4] Wang Xiao-Kai, Li Jian-She, Li Shu-Guang, Guo Ying, Meng Xiao-Jian, Wang Guo-Rui, Wang Lu-Yao, Li Zeng-Hui, Zhao Yuan-Yuan, Ding Yu-Xin. Design and research of a broadband mode-division multiplexer based on three-core photonic crystal fiber. Acta Physica Sinica, 2022, 71(4): 044206. doi: 10.7498/aps.71.20211187
    [5] Li Chang-Liang, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Yang Yi-Biao, Fei Hong-Ming, Sun Fei, Liu Yi-Chao. Micro-displacement detection of nanofluidic fluorescent particles based on waveguide-concentric ring resonator model. Acta Physica Sinica, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [6] Chen Shu-Yue, Jiang Chuang, Ke Shao-Lin, Wang Bing, Lu Pei-Xiang. Suppression of non-Hermitian skin effect via Aharonov-Bohm cage. Acta Physica Sinica, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [7] Design and research of a broadband mode division multiplexer based on three core photonic crystal fiber. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211187
    [8] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1×2 directional coupler demultiplexer based on sandwiched structure. Acta Physica Sinica, 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [9] Lu Li-Dan, Zhu Lian-Qing, Zeng Zhou-Mo, Cui Yi-Ping, Zhang Dong-Liang, Yuan Pei. Progress of silicon photonic devices-based Fano resonance. Acta Physica Sinica, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [10] Tu Xin, Chen Zhen-Min, Fu Hong-Yan. Reivew of silicon photonic switches. Acta Physica Sinica, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [11] Xiao Jin-Biao, Wang Deng-Feng. Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires. Acta Physica Sinica, 2017, 66(7): 074203. doi: 10.7498/aps.66.074203
    [12] Zhou Wen, Chen He-Ming. Mode division multiplexing of two-dimensional triangular lattice photonic crystal based on magneto-optical effect. Acta Physica Sinica, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [13] Ji Zhe, Jia Da-Gong, Zhang Hong-Xia, Zhang De-Long, Liu Tie-Gen, Zhang Yi-Mo. Study of structure parameters effect on performance of optical en/decoder based on parallel-cascaded microring resonators. Acta Physica Sinica, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [14] Zhou Pei-Ji, Li Zhi-Yong, Yu Yu-De, Yu Jin-Zhong. Research progress of silicon-based photonic integration. Acta Physica Sinica, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [15] Cao Tong-Tong, Zhang Li-Bin, Fei Yong-Hao, Cao Yan-Mei, Lei Xun, Chen Shao-Wu. Design of a high-speed silicon electro-optical modulator based on an add-drop micro-ring resonator. Acta Physica Sinica, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [16] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [17] Zhang Jia, Xu Xu-Ming, He Ling-Juan, Yu Tian-Bao, Guo Hao. Four-wavelength multiplexer/demultiplexer based on photonic crystal resonant coupling. Acta Physica Sinica, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [18] Cai Xin-Lun, Huang De-Xiu, Zhang Xin-Liang. Application of full vectorial mode matching method to the calculation of eigenmodes of three-dimensional bent waveguide. Acta Physica Sinica, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [19] Qin Xiao-Yun, Huang Bi-Qin, Chen Hai-Xing, Yang Li-Gong, Gu Pei-Fu. Wavelength demultiplexer using the spatial dispersion of repeated-period double-chirped structures*. Acta Physica Sinica, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [20] LI QIANG-FA. THEORETICAL ANALYSIS OF OPEN RESONATORS IN THE FORM OF WAVEGUIDE WITH SLOW-VARIED CROSS SECTION. Acta Physica Sinica, 1980, 29(11): 1405-1415. doi: 10.7498/aps.29.1405
Metrics
  • Abstract views:  6028
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2015
  • Accepted Date:  11 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map