Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of longitudinal mode on the transmission properties near the Dirac-like point of the photonic crystals

Wang Xiao Chen Li-Chao Liu Yan-Hong Shi Yun-Long Sun Yong

Citation:

Effect of longitudinal mode on the transmission properties near the Dirac-like point of the photonic crystals

Wang Xiao, Chen Li-Chao, Liu Yan-Hong, Shi Yun-Long, Sun Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, Chan and his collaborators reported that a crossing point of bands can be achieved at the Brillouin zone center in two-dimensional (2D) dielectric photonic crystals (PhCs) by accidental degeneracy of modes. At the crossing point, the accidental threefold degeneracy of modes generates a Dirac cone and an additional flat band (longitudinal mode) intersecting the Dirac cone. This is different from that of the Dirac point at the corner of the hexagonal Brillouin zone in which only Dirac cone exists. As a result, the crossing point at the Brillouin zone center is called a Dirac-like point. If the accidental degeneracy occurs by a monopole mode and two dipolar modes, the dielectric PhCs can be mapped to a zero-refractive-index system in which the effective permittivity and permeability are zero at the Dirac-like point from the effective medium theory. According to the Maxwell equations, if the permittivity and permeability are zero, the optical longitudinal modes can exist, in additional to the well-known transverse modes. The additional flat band at the Dirac-like point is closely connected with the longitudinal mode. For a homogeneous zero-index material (ZIM), the flat band is dispersionless and the longitudinal mode cannot couple with the external light. But in a finite-sized PhC, there is always some spatial dispersion, so the flat band is not perfectly dispersionless when it is away from the zone center. Therefore, if the wave source is a Gaussian beam with non-zero k-parallel components, the longitudinal mode can be excited. And the effective wavelength of ZIM is extremely large, leading to many scattering properties. However, in a PhC which behaves as if it had a zero refractive index, it is very interesting to show how the longitudinal mode influences the wave propagations in the PhC when the longitudinal mode is excited. In this paper, the effect of longitudinal mode on the transmission properties near the Dirac-like point of PhCs is investigated by numerical simulation. The alumina dielectric rods can be moved randomly in the structure to result in the disorder of the structure. Our results show that the transmission properties at the Dirac-like point are very different from those near the Dirac-like point, when the longitudinal mode is excited. At the Dirac-like point, the transmittance decreases with increasing disorder, as a result of the influence of the longitudinal mode, which is similar to the one in the pass band. Above the Dirac-like point without the disturbance of longitudinal mode, the transmittance is insensitive to the disorder in the structure, so that the structure may mimic a near-zero index materials and have a large effective wavelength. These results may further improve the understanding about the optical longitudinal mode and the zero refractive material.
      Corresponding author: Sun Yong, yongsun@tongji.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant Nos. 11234010, 11474220, 11274207, 11204217), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 14ZZ040), and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2012011011-5, 2013011007-2).
    [1]

    Zhong K, Zhang H Y, Zhang Y P, Li X F, Wang P, Yao J Q 2007 Acta Phys. Sin. 56 7029 (in Chinese) [钟凯, 张会云, 张玉萍, 李喜福, 王鹏, 姚建铨 2007 56 7029]

    [2]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [3]

    Sepkhanov R A, Bazaliy Ya B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [4]

    Zandbergen Sander R, de Dood Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [5]

    Bittner S, Dietz B, Miski-Oglu M, Richter A 2012 Phys. Rev. B 85 064301

    [6]

    Zhang X D 2008 Phys. Rev. Lett. 100 113903

    [7]

    Bahat. -Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [8]

    Poo Y, Wu R X, Lin Z F, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [9]

    Ouyang C F, Han D Z, Zhao F Y, Hu X H, Liu X H, Zi J 2012 J. Phys. : Condens. Matter 24 492203

    [10]

    Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H-J, Hossain T, de Forges de Parny L, Mortessagne F 2010 Phys. Rev. B 82 094308

    [11]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2014 Nat. mater. 13 57

    [12]

    Sepkhanov R A, Ossipov A, Beenakker C W J 2009 EPL 85 14005

    [13]

    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L, Chen H 2013 EPL 103 17003

    [14]

    Bellec M, Kuhl U, Montambaux G, Mortessagne F 2013 Phys. Rev. Lett. 110 033902

    [15]

    Rechtsman M C, Zeuner J M, Tünnermann A, Stefan Nolte, Segev M, Szamerit A 2013 Nat. photonics 7 153

    [16]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [17]

    Sakoda K 2012 Opt. Express 20 25181

    [18]

    Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699

    [19]

    Chan C T, Hang Z H, Huang X 2012 Adv. in OptoElectron. 2012 313984

    [20]

    Liu F M, Lai Y, Huang X Q, Chan C T 2011 Phys. Rev. B 84 224113

    [21]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. photonics 7 791

    [22]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 63 174204]

    [23]

    D'Aguanno G, Mattiucci N, Conti C, Bloemer M J 2013 Phys. Rev. B 87 085135

    [24]

    Mattiucci N, Bloemer M J, D'Aguanno G 2013 Opt. Express 21 11862

    [25]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002

    [26]

    Yang Y B, Wang S F, Li X J, Wang Y C, Liang W 2010 Acta Phys. Sin. 59 5073 (in Chinese) [杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟 2010 59 5073]

  • [1]

    Zhong K, Zhang H Y, Zhang Y P, Li X F, Wang P, Yao J Q 2007 Acta Phys. Sin. 56 7029 (in Chinese) [钟凯, 张会云, 张玉萍, 李喜福, 王鹏, 姚建铨 2007 56 7029]

    [2]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [3]

    Sepkhanov R A, Bazaliy Ya B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [4]

    Zandbergen Sander R, de Dood Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [5]

    Bittner S, Dietz B, Miski-Oglu M, Richter A 2012 Phys. Rev. B 85 064301

    [6]

    Zhang X D 2008 Phys. Rev. Lett. 100 113903

    [7]

    Bahat. -Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [8]

    Poo Y, Wu R X, Lin Z F, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [9]

    Ouyang C F, Han D Z, Zhao F Y, Hu X H, Liu X H, Zi J 2012 J. Phys. : Condens. Matter 24 492203

    [10]

    Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H-J, Hossain T, de Forges de Parny L, Mortessagne F 2010 Phys. Rev. B 82 094308

    [11]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2014 Nat. mater. 13 57

    [12]

    Sepkhanov R A, Ossipov A, Beenakker C W J 2009 EPL 85 14005

    [13]

    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L, Chen H 2013 EPL 103 17003

    [14]

    Bellec M, Kuhl U, Montambaux G, Mortessagne F 2013 Phys. Rev. Lett. 110 033902

    [15]

    Rechtsman M C, Zeuner J M, Tünnermann A, Stefan Nolte, Segev M, Szamerit A 2013 Nat. photonics 7 153

    [16]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [17]

    Sakoda K 2012 Opt. Express 20 25181

    [18]

    Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699

    [19]

    Chan C T, Hang Z H, Huang X 2012 Adv. in OptoElectron. 2012 313984

    [20]

    Liu F M, Lai Y, Huang X Q, Chan C T 2011 Phys. Rev. B 84 224113

    [21]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. photonics 7 791

    [22]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 63 174204]

    [23]

    D'Aguanno G, Mattiucci N, Conti C, Bloemer M J 2013 Phys. Rev. B 87 085135

    [24]

    Mattiucci N, Bloemer M J, D'Aguanno G 2013 Opt. Express 21 11862

    [25]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002

    [26]

    Yang Y B, Wang S F, Li X J, Wang Y C, Liang W 2010 Acta Phys. Sin. 59 5073 (in Chinese) [杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟 2010 59 5073]

  • [1] Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao. Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices. Acta Physica Sinica, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [2] Ji Yu-Xuan, Zhang Ming-Kai, Li Yan. Dual-band semi-Dirac cones in two-dimensional photonic crystal and zero-index material. Acta Physica Sinica, 2024, 73(18): 181101. doi: 10.7498/aps.73.20240800
    [3] Zhou Xiao-Xia, Chen Ying, Cai Li. An ultra-narrow-band optical filter based on zero refractive index metamaterial. Acta Physica Sinica, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [4] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [5] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [7] Wang Hai-Xiao, Xu Lin, Jiang Jian-Hua. Dirac photonic crystal. Acta Physica Sinica, 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [8] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [9] Geng Tao, Wu Na, Dong Xiang-Mei, Gao Xiu-Min. Tunable near-zero index of self-assembled photonic crystal using magnetic fluid. Acta Physica Sinica, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [10] Huang Xue-Qin, Chan Che-Ting. Dirac-like cones at k=0. Acta Physica Sinica, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [11] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [12] Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun. Localization of conduction electrons in nanometer metal Dy. Acta Physica Sinica, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [13] He Zheng-Hong, Ye Zhi-Cheng, Li Zheng-Guang, Cui Qing-Yu, Su Yi-Kai. Compound photonic crystals with cholesteric liquid crystals sandwiched isotropic defect layers. Acta Physica Sinica, 2011, 60(3): 034213. doi: 10.7498/aps.60.034213
    [14] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [15] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [16] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [17] Pan Jie-Yong, Liang Guan-Quan, Mao Wei-Dong, Wang He-Zhou. Study on complete band-gap of a kind of compound lattices. Acta Physica Sinica, 2006, 55(2): 729-732. doi: 10.7498/aps.55.729
    [18] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [19] Xu Xing-Sheng, Chen Hong-Da, Zhang Dao-Zhong. Photon localization in amorphous photonic crystal. Acta Physica Sinica, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [20] Feng Li-Juan, Jiang Hai-Tao, Li Hong-Qiang, Zhang Ye-Wen, Chen Hong. The dispersive characteristics of impurity bands in coupled-resonator optical waveguides of photonic crystals. Acta Physica Sinica, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
Metrics
  • Abstract views:  6452
  • PDF Downloads:  295
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2014
  • Accepted Date:  14 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map