-
Scintillation glass is an attractive material due to its many advantages including low-cost and easy-manufacturing compared with single crystal. However the low density of glass scintillator restricts its applications. The introduction of heavy components such as PbO and Bi2O3 allows the density of the glass to be easily increased to more than 6.0 g/cm3 which is desirable for most applications. However, it is usually accompanied with a dramatic decrease in the luminescence response of Ce3+ ions. Although Gd2O3 based glass has a relatively high light yield, it is far below the high silica glass. In order to explain why the luminescent efficiency of Ce3+ doped glass with low density is high while that with high density is low, a glass-forming region of SiO2-Al2O3-Gd2O3 ternary system is achieved by high-temperature melt-quenching method. Ce3+doped SiO2-Al2O3-Gd2O3 and SiO2-Al2O3-Gd2O3-Ln2O3 (Ln=Y, La, Lu) scintillation glasses are prepared at reducing atmosphere. Their optical and scintillation properties are investigated. The results show that the content of Gd2O3 can reach as high as 30% mol without phase separation. In addition, the UV cut-off position is red-shifted, PL intensity decreases and decay time reduces from 70 to 37.6 ns with increasing the Gd2O3 concentration. After Lu2O3, La2O3, Y2O3 are added in the glass, the UV cut-off position is red-shifted and PL intensity decreases. Moreover the UV cut-off position is in the order of La>Y>Lu and the decay time is in the order of La2O3 is more than 10% mol, X-ray excited luminescence light emission intensity reduces from 61% of BGO to 13% of BGO. With the UV cut-off position red-shifted, the bandgap of glass becomes narrow, resulting in the 5 d level of Ce3+ ions gradually approaching to the conduction band and the 5 d electrons easily combining with the holes in the glass through the conduction band. Namely, charge transferring quenching occurs. This is the reason why the PL intensity and decay time both decrease. It can also explain why the luminescent efficiency of Ce3+ doped glass with low density is high while that with high density is low.
-
Keywords:
- glass-forming region /
- scintillation glass /
- Ce3+ doped /
- charge transfer quenching effect
[1] Xie J J, Yang P Z, Liao J Y 2005 J. Inorg. Mater. 20 522 (in Chinese) [谢建军, 杨培志, 廖晶莹 2005 无机材料学报 20 522]
[2] Weber M J 2002 J. Lumin. 100 35
[3] He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901 (in Chinese) [何伟, 张约品, 王金浩, 王实现, 夏海平 2011 60 042901]
[4] Ginther R J, Schulmian J H 1958 IEEE. Trans. Nucl. Sci. 5 92
[5] Chewpraditkul W, Shen Y L, Chen D P, Yu B K, Prusa P, Nikl M, Beitlerova A, Wanarak C 2012 Opt. Mater. 34 1762
[6] Fu J, Kobayashi M, Sugimoto S, Parker J M 2008 Mater. Res. Bull. 128 99
[7] Chewpraditkul W, He X, Chen D P, Shen, Y L, Sheng Q C, Yu B K, Nikl M, Kucerkova R, Beitlerova A, Wanarak C 2011 Phys. Status Solidi A 208 2830
[8] Zhou W C 1996 J. Non-Cryst. Solids 201 256
[9] Bei J F, Qian G J, Liang X L, Yuan S L, Yang Y X, Chen G R 2007 Mater. Res. Bull. 42 1195
[10] Tang C M, Liu S, Liu L W, Chen D P 2015 J. Lumin. 160 317
[11] Dimitrov V, Sakka S 1996 J. Appl. Phys. 79 1736
[12] Zhao X Y, Wang X L, Lin H, Wang Z Q 2007 Physica B 392 132
[13] Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 62 247804]
[14] Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901 (in Chinese) [杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 61 192901]
[15] Blasse G, Schipper W, Hamelink J J 1991 Inorg. Chim. Acta 189 77
[16] Fu J, Parker J M, Brown R M, Flower P S 2003 J. Non-Cryst.Solids 326-327 335
-
[1] Xie J J, Yang P Z, Liao J Y 2005 J. Inorg. Mater. 20 522 (in Chinese) [谢建军, 杨培志, 廖晶莹 2005 无机材料学报 20 522]
[2] Weber M J 2002 J. Lumin. 100 35
[3] He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901 (in Chinese) [何伟, 张约品, 王金浩, 王实现, 夏海平 2011 60 042901]
[4] Ginther R J, Schulmian J H 1958 IEEE. Trans. Nucl. Sci. 5 92
[5] Chewpraditkul W, Shen Y L, Chen D P, Yu B K, Prusa P, Nikl M, Beitlerova A, Wanarak C 2012 Opt. Mater. 34 1762
[6] Fu J, Kobayashi M, Sugimoto S, Parker J M 2008 Mater. Res. Bull. 128 99
[7] Chewpraditkul W, He X, Chen D P, Shen, Y L, Sheng Q C, Yu B K, Nikl M, Kucerkova R, Beitlerova A, Wanarak C 2011 Phys. Status Solidi A 208 2830
[8] Zhou W C 1996 J. Non-Cryst. Solids 201 256
[9] Bei J F, Qian G J, Liang X L, Yuan S L, Yang Y X, Chen G R 2007 Mater. Res. Bull. 42 1195
[10] Tang C M, Liu S, Liu L W, Chen D P 2015 J. Lumin. 160 317
[11] Dimitrov V, Sakka S 1996 J. Appl. Phys. 79 1736
[12] Zhao X Y, Wang X L, Lin H, Wang Z Q 2007 Physica B 392 132
[13] Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 62 247804]
[14] Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901 (in Chinese) [杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 61 192901]
[15] Blasse G, Schipper W, Hamelink J J 1991 Inorg. Chim. Acta 189 77
[16] Fu J, Parker J M, Brown R M, Flower P S 2003 J. Non-Cryst.Solids 326-327 335
Catalog
Metrics
- Abstract views: 11179
- PDF Downloads: 263
- Cited By: 0