-
采用高温熔融退火法制备了系列 80TeO2-10Bi2O3-10TiO2-0.5Er2O3-xCe2O3 (x=0,0.25, 0.5,0.75,1.0 mol%)和(80-y) TeO2-10Bi2O3-10TiO2-yWO3-0.5Er2O3-0.75Ce2O3 (y=3,6,9,12 mol%)的碲铋酸盐玻璃.测试了玻璃样品400-1700 nm范围内的吸收光谱, 975 nm抽运下的上转换发光谱和1.53 m波段荧光谱, 以及808 nm激励下的Er3+离子荧光寿命和无掺杂玻璃样品的Raman光谱, 并结合Judd-Ofelt理论和McCumber理论计算了Er3+离子光谱参数.结果表明, 在掺Er3+碲铋酸盐玻璃中引入Ce3+离子进行Er3+/Ce3+共掺, 通过Er3+离子4I11/2能级与Ce3+离子2F5/2 能级间基于声子辅助的能量传递过程,可以有效抑制Er3+离子上转换发光并明显增强其 1.53 m波段荧光;同时,在现有Er3+/Ce3+共掺玻璃组分基础上引入WO3, 可进一步提高1.53 m波段荧光并展宽其荧光发射谱. 研究结果对于获取优异光谱特性的宽带掺Er3+光纤放大器玻璃基质具有实际意义.
-
关键词:
- 碲铋酸盐玻璃 /
- Er3+/Ce3+共掺 /
- 1.53 m波段荧光 /
- 光谱特性
A series of 80TeO2-10Bi2O3-10TiO2-0.5Er2O3-xCe2O3 (x=0, 0.25, 0.5, 0.75, 1.0 mol%) and (80-y) TeO2-10Bi2O3-10TiO2-yWO3-0.5Er2O3-0.75Ce2O3 (y=3, 6, 9, 12 mol%) tellurite-bismuth glasses are prepared by the conventional high-temperature melting and annealing method. The absorption spectra of 400-1700 nm, upconversion spectra and 1.53 m band fluorescence spectra under the excitation of 975 nm, the 4I11/2 and 4I13/2 level fluorescence lifetimes of Er3+ under the excitation of 808 nm, and the Raman spectra of doping-free glass samples are measured. Meanwhile, the spectroscopic parameters of Er3+ are calculated and analyzed with the help of Judd-Ofelt theory and McCumber theory. The results indicate that the upconversion fluorescence can be suppressed efficiently and the 1.53 m band fluorescence can be enhanced evidently, owing to the energy transfer from Er3 +: 4I11/2Ce3+:2F5/2 levels when the Ce3+ ions are introduced into the Er3+-doped tellurite-bismuth glasses. Moreover, the 1.53 m band fluorescence intensity can be improved and the fluorescence spectral width can be broadened further when an appropriate amount of WO3 component is introduced. The above research results are of theoretical significance for obtaining the tellurite-bismuth glasses with excellent spectroscopic properties, which are used for the 1.53 m broadband Erbium-doped optical fiber amplifier.-
Keywords:
- tellurite-bismuth glass /
- Er3+/Ce3+ co-doping /
- 1.53 m band fluorescence /
- spectroscopic property
[1] Jlassi I, Elhouichet H, Ferid M, Barthou C 2010 J. Luminescence 130 2394
[2] Wu Z J, Sun J T, Zhang J H, Luo Y S, Lv S C, Sun M H 2008 J. Optoelectron · Laser 19 1067 (in Chinese) [吴昭君, 孙江亭, 张家骅, 骆永石, 吕树臣, 孙民华 2008 光电子 ·激光 19 1067]
[3] Mori A, Sakamoto T, Kobayashi K, Shikano K, Oikawa K, Hoshino K, Kanamori T, Ohishi Y, Shimizu M 2002 J. Lightwave Technol. 20 794
[4] Choi Y G, Kim K H, Park S H, Heo J 2000 J. Appl. Phys. 88 3832
[5] Shen S, Richards B, Jha A 2006 Opt. Express 14 5050
[6] Yang J H, Zhang L Y, Wen L, Dai S X, Hu L L, Jiang Z H 2003 Chem. Phys. Lett. 384 295
[7] Slack G A, Dole S L, Tsoukala V, Nolas G S 1994 J. Opt. Soc. Am. B 11 961
[8] Qiu J, Shimizugawa Y, Iwabuchi Y, Hirao K 1997 Appl. Phys. Lett. 71 43
[9] Judd B R 1962 Phys. Rev. B: Condens. Matter 127 750
[10] Ofelt G S 1962 J. Chem. Phys. 37 511
[11] Tanabe S 1999 J. Non-Cryst. Solids 259 1
[12] Weber M J 1967 Phys. Rev. 157 262
[13] Heo J, Lam D, Sigel G H, Mendoza E A, Hensley D A 1992 J. Am. Ceramic Soc. 75 277
[14] Himei Y, Osaka A, Nanba T, Miura Y 1994 J. Non-Cryst. Solids 177 164
[15] Chen D D, Zhang Q Y, Jiang Z H 2010 Acta Phys. Sin. 59 796 (in Chinese) [陈东丹, 张勤远, 姜中宏 2010 59 796]
[16] Yang J H, Dai S X, Hu L L, Jang Z H, Li S G 2003 Chin. J. Lasers 30 267 (in Chinese) [杨建虎, 戴世勋, 胡丽丽, 姜中宏, 李顺光 2003 中国激光 30 267]
[17] McCumber D E 1964 Phys. Rev. 134 A299
[18] Naftaly M, Shen S, Jha A 2000 Appl. Opt. 39 4979
[19] Dai S X, Xu T F, Nie Q H, Shen X, Zhang J J, Hu L L 2006 Acta Phys. Sin. 55 1479 (in Chinese) [戴世勋, 徐铁峰, 聂秋华, 沈祥, 张军杰, 胡丽丽 2006 55 1479]
[20] Xu J, Su L B, Li H J, Zhang D, Wen L, Lin H, Zhao G J 2007 Opt. Mater. 29 932
-
[1] Jlassi I, Elhouichet H, Ferid M, Barthou C 2010 J. Luminescence 130 2394
[2] Wu Z J, Sun J T, Zhang J H, Luo Y S, Lv S C, Sun M H 2008 J. Optoelectron · Laser 19 1067 (in Chinese) [吴昭君, 孙江亭, 张家骅, 骆永石, 吕树臣, 孙民华 2008 光电子 ·激光 19 1067]
[3] Mori A, Sakamoto T, Kobayashi K, Shikano K, Oikawa K, Hoshino K, Kanamori T, Ohishi Y, Shimizu M 2002 J. Lightwave Technol. 20 794
[4] Choi Y G, Kim K H, Park S H, Heo J 2000 J. Appl. Phys. 88 3832
[5] Shen S, Richards B, Jha A 2006 Opt. Express 14 5050
[6] Yang J H, Zhang L Y, Wen L, Dai S X, Hu L L, Jiang Z H 2003 Chem. Phys. Lett. 384 295
[7] Slack G A, Dole S L, Tsoukala V, Nolas G S 1994 J. Opt. Soc. Am. B 11 961
[8] Qiu J, Shimizugawa Y, Iwabuchi Y, Hirao K 1997 Appl. Phys. Lett. 71 43
[9] Judd B R 1962 Phys. Rev. B: Condens. Matter 127 750
[10] Ofelt G S 1962 J. Chem. Phys. 37 511
[11] Tanabe S 1999 J. Non-Cryst. Solids 259 1
[12] Weber M J 1967 Phys. Rev. 157 262
[13] Heo J, Lam D, Sigel G H, Mendoza E A, Hensley D A 1992 J. Am. Ceramic Soc. 75 277
[14] Himei Y, Osaka A, Nanba T, Miura Y 1994 J. Non-Cryst. Solids 177 164
[15] Chen D D, Zhang Q Y, Jiang Z H 2010 Acta Phys. Sin. 59 796 (in Chinese) [陈东丹, 张勤远, 姜中宏 2010 59 796]
[16] Yang J H, Dai S X, Hu L L, Jang Z H, Li S G 2003 Chin. J. Lasers 30 267 (in Chinese) [杨建虎, 戴世勋, 胡丽丽, 姜中宏, 李顺光 2003 中国激光 30 267]
[17] McCumber D E 1964 Phys. Rev. 134 A299
[18] Naftaly M, Shen S, Jha A 2000 Appl. Opt. 39 4979
[19] Dai S X, Xu T F, Nie Q H, Shen X, Zhang J J, Hu L L 2006 Acta Phys. Sin. 55 1479 (in Chinese) [戴世勋, 徐铁峰, 聂秋华, 沈祥, 张军杰, 胡丽丽 2006 55 1479]
[20] Xu J, Su L B, Li H J, Zhang D, Wen L, Lin H, Zhao G J 2007 Opt. Mater. 29 932
计量
- 文章访问数: 7079
- PDF下载量: 687
- 被引次数: 0