Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic analysis of lubrication considering solid-liquid interface interaction

Jing Hao-Da Zhang Xiang-Jun Tian Yu Meng Yong-Gang

Citation:

Thermodynamic analysis of lubrication considering solid-liquid interface interaction

Jing Hao-Da, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Friction or lubrication process is a typical process of the energy dissipation. It can be reasonably described and speculated by using the entropy increase and dissipative structure theory of the non-equilibrium thermodynamics. In this paper, we model and analyze the typical thin-film lubrication mechanism based on the theory of thermodynamics, by using the interfacial disjoining pressure to characterize the dominant role of the solid-lubricant interaction on a microscale and establishing the lubrication Stribeck curve based on thermodynamic concepts. The concept of entropy production is adopted to describe the lubrication system, which is defined as the sum of multiplications of the thermodynamic forces and flows. Then the variations and the competing relations between the pairs of thermodynamic forces and flows could be used to reveal the different factors dominated in the lubrication system, such as the solid-liquid interaction, the sliding velocity, and the normal load. In this paper, we assume that all the dissipated energy caused by the viscous resistance of lubricant is converted into heat, then the total entropy increase per surface area at the frictional interface is considered, affected by interfacial disjoining pressure and the one-dimensional heat flow. With the entropy increasing analysis of lubrication process, we find that when the entropy production in the steady state becomes minimum, the total energy dissipation due to friction also becomes minimum, which directly indicates the lowest friction coefficient point at the lubrication Stribeck curve. Moreover, when a lubrication system loses its stability slightly from the equilibrium state, self-organization may occur at the solid-lubricant interface, thus resulting in partially ordering interfacial structures, which may indicate the interfacial structures when tribosystem turns from hydrodynamic lubrication phase into thin-film lubrication phase. In the experimental aspect, the location of the lowest friction coefficient point at the Stribeck curve has a very good correspondence to the minimum entropy point predicted by our thermodynamic model, and the lubrication transition process from hydrodynamic phase to thin-film phase can be explained quite well by the theory of dissipative structures when the system loses its stability. Furthermore, a calculation model of the friction coefficient for thin-film lubrication is obtained when considering the dominant contribution of the solid-lubricant interfacial interaction through an equivalent force method. The calculation data correspond well to the experimental results. In summary, thermodynamic model could effectively characterize the lubrication process in mechanism by revealing the involved multi-scale effect, multi-physical effect and nonlinear coupling effect.
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2012CB934101) and the National Natural Science Foundation of China (Grant Nos. 51175282, 51375254).
    [1]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [2]

    Fox-Rabinovich G S, Gershman I S, Yamamoto K, Biksa A, Veldhuis S C, Beake B D, Kovalev A I 2010 Entropy 12 275

    [3]

    Nosonovsky M 2010 Entropy 12 1345

    [4]

    Klamecki B E 1980 Wear 58 325

    [5]

    Klamecki B E 1980 Wear 63 113

    [6]

    Klamecki B E 1982 Wear 77 115

    [7]

    Klamecki B E 1984 Wear 96 319

    [8]

    Zmitrowicz A 1987 Wear 114 135

    [9]

    Zmitrowicz A 1987 Wear 114 169

    [10]

    Zmitrowicz A 1987 Wear 114 199

    [11]

    Doelling K L, Ling F F, Bryant M D, Heilman B P 2000 J. Appl. Phys. 88 2999

    [12]

    Dai Z D, Yang S R, Wang M, Xue Q J 2000 J. Nanjing Univ. Aeronaut. Astronaut. 32 125 (in Chinese) [戴振东, 杨生荣, 王珉, 薛群基 2000 南京航空航天大学学报 32 125]

    [13]

    Bryant M D, Khonsari M M, Ling F F 2008 Proc. Roy. Soc. A 464 2001

    [14]

    Bryant M D 2009 FME Trans. 37 55

    [15]

    Nosonovsky M, Bhushan B 2009 Phil. Trans. R. Soc. A 367 1607

    [16]

    Zypman F R, Ferrante J, Jansen M, Scanlon K, Abel P 2003 J. Phys. Condens. Mat. 15 191

    [17]

    Adler M, Ferrante J, Schilowitz A, Yablon D, Zypman F 2004 Mater. Res. Soc. 782 111

    [18]

    Zhang X J, Huang Y, Guo Y B, Tian Y, Meng Y G 2013 Chin. Phys. B 22 16202

    [19]

    Nicolis G, Prigogine I 1977 Self-organization in Nonequilibrium Systems (New York: Wiley) pp32-62

    [20]

    Glansdorff P, Prigogine I, Hill R N 1973 Am. J. Phys. 41 147

    [21]

    Prigogine I, Nicolis G, Misguich J 1965 J. Chem. Phys. 43 4516

    [22]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [23]

    Mate C M 1992 J. Appl. Phys. 72 3084

    [24]

    Israelachvili J N 2011 Intermolecular and Surface Forces 3 (San Diego: Academic press) pp261-270

    [25]

    Mitlin V S 1995 J. Colloid Interf. Sci. 170 65

    [26]

    Salamon P, Nitzan A, Andresen B, Berry R S 1980 Phys. Rev. A 21 2115

    [27]

    Hanumanthu R, Stebe K J 2011 Colloids Surf. A 391 51

    [28]

    Mellema M, Benjamins J 2004 Colloids Surf. A 237 113

    [29]

    Bongaerts J H H, Fourtouni K, Stokes J R 2007 Tribol. Int. 40 1531

    [30]

    Hamrock B J, Dowson D 1977 J. Tribol-T. ASME 99 264

    [31]

    Zhang X J, Liu X X, Zhang X H, Tian Y, Meng Y G 2012 Liq. Cryst. 39 1305

    [32]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

  • [1]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [2]

    Fox-Rabinovich G S, Gershman I S, Yamamoto K, Biksa A, Veldhuis S C, Beake B D, Kovalev A I 2010 Entropy 12 275

    [3]

    Nosonovsky M 2010 Entropy 12 1345

    [4]

    Klamecki B E 1980 Wear 58 325

    [5]

    Klamecki B E 1980 Wear 63 113

    [6]

    Klamecki B E 1982 Wear 77 115

    [7]

    Klamecki B E 1984 Wear 96 319

    [8]

    Zmitrowicz A 1987 Wear 114 135

    [9]

    Zmitrowicz A 1987 Wear 114 169

    [10]

    Zmitrowicz A 1987 Wear 114 199

    [11]

    Doelling K L, Ling F F, Bryant M D, Heilman B P 2000 J. Appl. Phys. 88 2999

    [12]

    Dai Z D, Yang S R, Wang M, Xue Q J 2000 J. Nanjing Univ. Aeronaut. Astronaut. 32 125 (in Chinese) [戴振东, 杨生荣, 王珉, 薛群基 2000 南京航空航天大学学报 32 125]

    [13]

    Bryant M D, Khonsari M M, Ling F F 2008 Proc. Roy. Soc. A 464 2001

    [14]

    Bryant M D 2009 FME Trans. 37 55

    [15]

    Nosonovsky M, Bhushan B 2009 Phil. Trans. R. Soc. A 367 1607

    [16]

    Zypman F R, Ferrante J, Jansen M, Scanlon K, Abel P 2003 J. Phys. Condens. Mat. 15 191

    [17]

    Adler M, Ferrante J, Schilowitz A, Yablon D, Zypman F 2004 Mater. Res. Soc. 782 111

    [18]

    Zhang X J, Huang Y, Guo Y B, Tian Y, Meng Y G 2013 Chin. Phys. B 22 16202

    [19]

    Nicolis G, Prigogine I 1977 Self-organization in Nonequilibrium Systems (New York: Wiley) pp32-62

    [20]

    Glansdorff P, Prigogine I, Hill R N 1973 Am. J. Phys. 41 147

    [21]

    Prigogine I, Nicolis G, Misguich J 1965 J. Chem. Phys. 43 4516

    [22]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [23]

    Mate C M 1992 J. Appl. Phys. 72 3084

    [24]

    Israelachvili J N 2011 Intermolecular and Surface Forces 3 (San Diego: Academic press) pp261-270

    [25]

    Mitlin V S 1995 J. Colloid Interf. Sci. 170 65

    [26]

    Salamon P, Nitzan A, Andresen B, Berry R S 1980 Phys. Rev. A 21 2115

    [27]

    Hanumanthu R, Stebe K J 2011 Colloids Surf. A 391 51

    [28]

    Mellema M, Benjamins J 2004 Colloids Surf. A 237 113

    [29]

    Bongaerts J H H, Fourtouni K, Stokes J R 2007 Tribol. Int. 40 1531

    [30]

    Hamrock B J, Dowson D 1977 J. Tribol-T. ASME 99 264

    [31]

    Zhang X J, Liu X X, Zhang X H, Tian Y, Meng Y G 2012 Liq. Cryst. 39 1305

    [32]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

  • [1] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] Wu Xiao-Wa, Qin Si-Qing, Xue Lei, Yang Bai-Cun, Zhang Ke. Behavior characteristics from self-organization to criticality caused by cumulative damage leading to instability of locked segments in seismogenic fault system. Acta Physica Sinica, 2018, 67(20): 206401. doi: 10.7498/aps.67.20180614
    [3] Sun Bao-An, Wang Li-Feng, Shao Jian-Hua. Self-organized critical behavior in plastic flow of amorphous solids. Acta Physica Sinica, 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [4] Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation. Acta Physica Sinica, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [5] Huang Li-Qing, Pan Hua-Qiang, Wang Jun, Tong Hui-Min, Zhu Ke, Ren Guan-Xu, Wang Yong-Chang. Spontaneous formation of ordered Sn nanodot array on porous anodic alumina membrane. Acta Physica Sinica, 2007, 56(11): 6712-6716. doi: 10.7498/aps.56.6712
    [6] Zhang Lin, Kong Hong-Yan, Yang Guo-Jian. Self-organization of light driven atoms induced by recoil effect in a harmonic trap. Acta Physica Sinica, 2006, 55(10): 5122-5128. doi: 10.7498/aps.55.5122
    [7] Zhou Hai-Ping, Cai Shao-Hong, Wang Chun-Xiang. Self-organized criticality in one-dimensional sandpile model with avalanche probability included. Acta Physica Sinica, 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [8] Dong Qing-Rui, Niu Zhi-Chuan. Excitonic energy of vertically stacked self-assmbled InAs quantum dots. Acta Physica Sinica, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [9] Zhang Yong-Ju, Yu Sen-Jiang. Self-organization of ordered surface patterns in nearly free sustained Al films. Acta Physica Sinica, 2005, 54(10): 4867-4873. doi: 10.7498/aps.54.4867
    [10] Li Xin, Hu Yuan-Zhong, Wang Hui. A molecular dynamics study on lubricant perfluoropolyether in hard disk driver. Acta Physica Sinica, 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
    [11] Wu Qing-Song, Zhao Yan, Zhang Cai-Bei, Li Feng. Self-assembling behavior and optical properties of triangular silver nanoplates. Acta Physica Sinica, 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
    [12] Gong Long-Yan, Tong Pei-Qing. Dynamical phase transition and self-organized critical phenomena in the two-dim ensional gas lattice model. Acta Physica Sinica, 2003, 52(11): 2757-2761. doi: 10.7498/aps.52.2757
    [13] . Acta Physica Sinica, 2002, 51(2): 310-314. doi: 10.7498/aps.51.310
    [14] Quan Hong-Jun, Wang Bing-Hong, Yang Wei-Song, Wang Wei-Ning, Luo Xiao-Shu. The self-organized segregation effect of evolutionary minority game with imitation. Acta Physica Sinica, 2002, 51(12): 2667-2670. doi: 10.7498/aps.51.2667
    [15] QIN WEI-PING, QIN GUAN-SHI, ZHANG JI-SHEN, WU CHANG-FENG, WANG JI-WEI, DU GUO-TONG. THERMODYNAMIC BEHAVIOR OF SMPC. Acta Physica Sinica, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
    [16] SI JUN-JIE, YANG QIN-QING, TENG DA, WANG HONG-JIE, YU JIN-ZHONG, WANG QI-MING, GUO LI-WEI, ZHOU JUN-MING. MORPHOLOGY AND PHOTOLUMINESCENCE OF GeSi SELF-ASSEMBLED QUANTUM DOT ON Si(113). Acta Physica Sinica, 1999, 48(9): 1745-1750. doi: 10.7498/aps.48.1745
    [17] LV ZHEN-DONG, LI QING, XU JI-ZONG, ZHENG BAO-ZHEN, XU ZHONG-YING, GE WEI-KUN. EXCITON DYNAMICS IN SELF-ORGANIZED InAs/GaAs QUANTUM DOTS. Acta Physica Sinica, 1999, 48(4): 744-750. doi: 10.7498/aps.48.744
    [18] WANG ZHI-MING, FENG SONG-LIN, Lv ZHEN-DONG, YANG XIAO-PING, CHEN ZONG-GUI, SONG CHUN-YING, XU ZHONG-YING, ZHENG HOU-ZHI, WANG FENG-LIAN, HAN PAI-DE, DUAN XIAO-FENG. STUDY OF VERTICALLY ALIGNING GROWTH OF SELF-ASSEMBLED InAs/GaAs QUANTUM DOTS. Acta Physica Sinica, 1998, 47(1): 89-93. doi: 10.7498/aps.47.89
    [19] OU FA. . Acta Physica Sinica, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [20] Lu Ke. . Acta Physica Sinica, 1995, 44(9): 1454-1460. doi: 10.7498/aps.44.1454
Metrics
  • Abstract views:  6583
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2014
  • Accepted Date:  06 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map