-
Particle focusing induced by viscoelasticity of fluids has attracted increasing interest in recent years. However, the regulation mechanisms of critical parameters affecting the particle focusing behaviors are still unclear. This paper systematically characterized the dynamics of particle migration in non-Newtonian fluid flows, and analyzed the effects of flow rate and channel length on particle focusing behaviors. Först, the lateral migration behaviors of particles suspended in Newtonian fluids (e.g., pure water and 22 wt% glycerol aqueous solution) are compared with those in non-Newtonian fluids (8 wt% polyvinylpyrrolidone aqueous solution). It is found that the particles suspended in non-Newtonian fluids would migrate towards the channel centerline and form a single-line particle array under the action of elastic force while the particles suspended in Newtonian fluids would migrate to form a famous Segré-Silberberg particle annular ring due to the effects of inertial lift forces. Second, the effects of particle size and driving flow rate on particle viscoelastic focusing are quantitatively analyzed. Results show that with increasing flow rate the focusing degree increases and finally stabilize at a certain value, and the large particles have better focusing quality than the small ones. Finally, the dynamic focusing process of particles along the channel length is investigated. A mathematical model of safe channel length for achieving particle focusing is derived and validated by experiments. It is found that the safe channel length for large particles is significantly shorter than that for small ones. The obtained results would improve the understanding of particle focusing processes and mechanisms, and help realize the flexible control of particle migration behaviors in non-Newtonian fluids.
-
Keywords:
- viscoelastic /
- particle focusing /
- non-Newtonian fluid /
- microchannel
[1] Hsu C H, Di C D, Chen C, Irimia D, Toner M 2008 Lab. Chip 8 2128
[2] Shelby J P, Lim D S W, Kuo J S, Chiu D T 2003 Nature 425 38
[3] Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H 2013 Microfluid Nanofluid 14 89
[4] Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 74702
[5] Yang S, Undar A, Zahn J D 2006 Lab. Chip 6 871
[6] Kang K, Lee S S, Hyun K, Lee S J, Kim J M 2013 Nat. Commun. 4 2567
[7] Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 63 207102]
[8] Sun Y L, Wang C H, Le Z C 2014 Acta Phys. Sin. 63 154701 (in Chinese) [孙运利, 王昌辉, 乐孜纯 2014 63 154701]
[9] Karnis A, Mason S G 1966 Trans. Soc. Rheol. 10 571
[10] Gauthier F, Goldsmith H L, Mason S G 1971 Rheol. Acta 10 344
[11] Gauthier F, Goldsmith H L, Mason S G 1971 Trans. Soc. Rheol. 15 297
[12] Ho B P, Leal L G 1976 J. Fluid Mech. 76 783
[13] Gao S X, Hartnett J P 1993 Int. Comm. Heat Mass Transfer 20 197
[14] Huang P Y, Feng J, Hu H H, Joseph D D 1997 J. Fluid Mech. 343 73
[15] Leshansky A M, Bransky A, Korin N, Dinnar U 2007 Phys. Rev. Lett. 98 234501
[16] Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2013 J. Non-Newton. Fluid Mech. 195 1
[17] Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M 2012 Anal. Chem. 84 10471
[18] Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2011 J. Non-Newton. Fluid Mech. 166 1396
[19] Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M 2014 Nat. Commun. 5 4120
[20] Del G F, Romeo G, D’Avino G, Greco F, Netti P A, Maffettone P L 2013 Lab. Chip 13 4263
[21] Nam J, Lim H, Kim D, Jung H, Shin S 2012 Lab. Chip 12 1347
[22] Lee D J, Brenner H, Youn J R, Song Y S 2013 Sci. Rep. 3 3258
[23] Yang S, Kim J Y, Lee S J, Lee S S, Kim J M 2011 Lab. Chip 11 266
[24] James D F 1966 Nature 212 754
[25] Merrington A C 1943 Nature 152 663
[26] Weissenberg K 1947 Nature 159 310
[27] James D F 2009 Annu. Rev. Fluid Mech. 41 129
[28] Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M 2012 Soft Matter 8 5011
[29] Won Seo K, Ran H Y, Joon L S 2014 Appl. Phys. Lett. 104 213702
[30] Tehrani M A 1996 J. Rheol. 40 1057
[31] D’Avino G, Romeo G, Villone M M, Greco F, Netti P A, Maffettone P L 2012 Lab. Chip 12 1638
[32] Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 24703 (in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 62 24703]
[33] Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704
[34] Kang A, Ahn S, Lee S, Lee B, Lee S, Kim J 2011 Korea-Aust. Rheol. J: 23 247
[35] Segre G, Silberberg A 1961 Nature 189 209
[36] Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 44116
[37] Di C D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U. S. A 104 18892
[38] Asmolov E S 1999 J. Fluid Mech. 381 63
[39] Seo K W, Byeon H J, Huh H K, Lee S J 2014 RSC Adv. 4 3512
-
[1] Hsu C H, Di C D, Chen C, Irimia D, Toner M 2008 Lab. Chip 8 2128
[2] Shelby J P, Lim D S W, Kuo J S, Chiu D T 2003 Nature 425 38
[3] Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H 2013 Microfluid Nanofluid 14 89
[4] Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 74702
[5] Yang S, Undar A, Zahn J D 2006 Lab. Chip 6 871
[6] Kang K, Lee S S, Hyun K, Lee S J, Kim J M 2013 Nat. Commun. 4 2567
[7] Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 63 207102]
[8] Sun Y L, Wang C H, Le Z C 2014 Acta Phys. Sin. 63 154701 (in Chinese) [孙运利, 王昌辉, 乐孜纯 2014 63 154701]
[9] Karnis A, Mason S G 1966 Trans. Soc. Rheol. 10 571
[10] Gauthier F, Goldsmith H L, Mason S G 1971 Rheol. Acta 10 344
[11] Gauthier F, Goldsmith H L, Mason S G 1971 Trans. Soc. Rheol. 15 297
[12] Ho B P, Leal L G 1976 J. Fluid Mech. 76 783
[13] Gao S X, Hartnett J P 1993 Int. Comm. Heat Mass Transfer 20 197
[14] Huang P Y, Feng J, Hu H H, Joseph D D 1997 J. Fluid Mech. 343 73
[15] Leshansky A M, Bransky A, Korin N, Dinnar U 2007 Phys. Rev. Lett. 98 234501
[16] Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2013 J. Non-Newton. Fluid Mech. 195 1
[17] Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M 2012 Anal. Chem. 84 10471
[18] Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2011 J. Non-Newton. Fluid Mech. 166 1396
[19] Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M 2014 Nat. Commun. 5 4120
[20] Del G F, Romeo G, D’Avino G, Greco F, Netti P A, Maffettone P L 2013 Lab. Chip 13 4263
[21] Nam J, Lim H, Kim D, Jung H, Shin S 2012 Lab. Chip 12 1347
[22] Lee D J, Brenner H, Youn J R, Song Y S 2013 Sci. Rep. 3 3258
[23] Yang S, Kim J Y, Lee S J, Lee S S, Kim J M 2011 Lab. Chip 11 266
[24] James D F 1966 Nature 212 754
[25] Merrington A C 1943 Nature 152 663
[26] Weissenberg K 1947 Nature 159 310
[27] James D F 2009 Annu. Rev. Fluid Mech. 41 129
[28] Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M 2012 Soft Matter 8 5011
[29] Won Seo K, Ran H Y, Joon L S 2014 Appl. Phys. Lett. 104 213702
[30] Tehrani M A 1996 J. Rheol. 40 1057
[31] D’Avino G, Romeo G, Villone M M, Greco F, Netti P A, Maffettone P L 2012 Lab. Chip 12 1638
[32] Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 24703 (in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 62 24703]
[33] Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704
[34] Kang A, Ahn S, Lee S, Lee B, Lee S, Kim J 2011 Korea-Aust. Rheol. J: 23 247
[35] Segre G, Silberberg A 1961 Nature 189 209
[36] Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 44116
[37] Di C D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U. S. A 104 18892
[38] Asmolov E S 1999 J. Fluid Mech. 381 63
[39] Seo K W, Byeon H J, Huh H K, Lee S J 2014 RSC Adv. 4 3512
Catalog
Metrics
- Abstract views: 5903
- PDF Downloads: 1910
- Cited By: 0