-
The influence of electric field on near-interface 4-pentyl-4'-cyanobiphenyl(5CB) liquid crystal (LC) is investigated with quartz crystal microbalance (QCM). The results of QCM show that the process of frequency shifting with electric field, which reflects the viscoelasticity change of 5CB, can be divided into two parts. Then the two-layer model of 5CB is proposed to illuminate the results of QCM, thereby indicating that the effect of electric field on near-interface layer is different from on bulk layer. Quantitative analysis is carried out with two-layer model of QCM, which indicates that there is a near-interface layer of about 100nm, adsorbed on the upper electrode of quartz crystal. The complex shear viscosity of the near-interface layer decreases with electric field strength increasing, which is opposite to the rule of bulk viscosity of 5CB.
-
Keywords:
- near-interface 4-pentyl-4'-cyanobiphenyl (5CB) liquid crystal /
- quartz crystal microbalance /
- near-interface layer /
- viscoelasticities
[1] Van Aerle N A J M, Barmentlo M, Hollering R W J 1993 J. Appl.Phys. 74 3111
[2] Tsvetkov V A 2005 Mol. Cryst. Liq. Cryst. 436 1157
[3] Arno D, Diethelm J 2002 Appl.Phys.Lett. 80 4750
[4] Shen Mingwu, Luo Jianbin, Wen Shizhu, Yao Junbin 2001 Chinese.Sci.Bulletin 46 603(in Chinese)[沈明武、雒建斌、温诗铸、姚俊斌 2001 科学通报 46 603]
[5] Mu Q Q, Liu Y J, Hu L F, Li D Y, Cao Z L, Xuan L 2006 Acta Phys. Sin. 55 1055(in Chinese)[穆全全、刘永军、胡立发、李大禹、曹召良、宣 丽 2006 55 1055]
[6] Liu H W, Tang K B 1996 Acta Phys. Sin. 45 480 (in Chinese)[刘和文、唐凯斌 1996 45 480]
[7] Martinoty P, Candau S 1971 Mol. Cryst. Liq. Cryst. 14 243
[8] Kiry F, Martinoty P 1977 J. Phys. (Paris) 38 153
[9] Inoue M, Yoshino K 2002 Jpn. J. Appl. Phys. 91 2798
[10] De Gennes P G 1974 The Physics of Liquid Crystals (Oxford University Press, London)
[11] Martin P C, Parodi O, Pershan P S 1972 Phys. Rev. A 6 2401
[12] Muramatsu H, Iwasaki F 1995 Mol. Cryst. Liq. Cryst. 258 153
[13] Kubono A, Akiyama R 2006 Mol. Cryst. Liq. Cryst. 445 213
[14] McHale G, Lucklum R 2000 J. Appl. Phys. 88 7304
[15] Reed C E, Kanazawa K K, Kaufman J H 1990 J. Appl. Phys. 68 1993
[16] Ankit R P, Bruce A K 2009 J. Pharm. Sci. 98 3108
[17] Lelidis I 1998 Liq. Cryst. 25 531
-
[1] Van Aerle N A J M, Barmentlo M, Hollering R W J 1993 J. Appl.Phys. 74 3111
[2] Tsvetkov V A 2005 Mol. Cryst. Liq. Cryst. 436 1157
[3] Arno D, Diethelm J 2002 Appl.Phys.Lett. 80 4750
[4] Shen Mingwu, Luo Jianbin, Wen Shizhu, Yao Junbin 2001 Chinese.Sci.Bulletin 46 603(in Chinese)[沈明武、雒建斌、温诗铸、姚俊斌 2001 科学通报 46 603]
[5] Mu Q Q, Liu Y J, Hu L F, Li D Y, Cao Z L, Xuan L 2006 Acta Phys. Sin. 55 1055(in Chinese)[穆全全、刘永军、胡立发、李大禹、曹召良、宣 丽 2006 55 1055]
[6] Liu H W, Tang K B 1996 Acta Phys. Sin. 45 480 (in Chinese)[刘和文、唐凯斌 1996 45 480]
[7] Martinoty P, Candau S 1971 Mol. Cryst. Liq. Cryst. 14 243
[8] Kiry F, Martinoty P 1977 J. Phys. (Paris) 38 153
[9] Inoue M, Yoshino K 2002 Jpn. J. Appl. Phys. 91 2798
[10] De Gennes P G 1974 The Physics of Liquid Crystals (Oxford University Press, London)
[11] Martin P C, Parodi O, Pershan P S 1972 Phys. Rev. A 6 2401
[12] Muramatsu H, Iwasaki F 1995 Mol. Cryst. Liq. Cryst. 258 153
[13] Kubono A, Akiyama R 2006 Mol. Cryst. Liq. Cryst. 445 213
[14] McHale G, Lucklum R 2000 J. Appl. Phys. 88 7304
[15] Reed C E, Kanazawa K K, Kaufman J H 1990 J. Appl. Phys. 68 1993
[16] Ankit R P, Bruce A K 2009 J. Pharm. Sci. 98 3108
[17] Lelidis I 1998 Liq. Cryst. 25 531
Catalog
Metrics
- Abstract views: 9388
- PDF Downloads: 893
- Cited By: 0