Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target

Wei Liu-Lei Cai Hong-Bo Zhang Wen-Shuai Tian Jian-Min Zhang En-Hao Xiong Jun Zhu Shao-Ping

Citation:

Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target

Wei Liu-Lei, Cai Hong-Bo, Zhang Wen-Shuai, Tian Jian-Min, Zhang En-Hao, Xiong Jun, Zhu Shao-Ping
PDF
HTML
Get Citation
  • Micro-structured targets have been widely used in the interaction between ultra-intense laser and target, aiming at improving the electron accelerating efficiency. In this paper, we perform two-dimensional particle-in-cell (PIC) simulations to study the interaction of the ultra-intense laser pulse with the micro-structured foam-attached target (the foam is composed of low density bubbles and high density interfaces between the bubbles). It is found that at the beginning of the laser-plasma interaction, the fast electrons accelerated at the front surface of the foam freely propagate into the target and drive a return current of cold background electrons. These cold background electrons are restricted to propagate along the interfaces between the bubbles in the foam due to the self-generated large sheath field. As a result, small current filaments are generated in the foam, which then leads to the generation of randomly distributed megagauss magnetic field in the foam layer. This quasistatic magnetic field then acts as an energy-selective " magnetic barrier”: the low-energy electrons are reflected back into the laser acceleration region while the high-energy electrons can penetrate through it. If the reflected electrons enter into the laser field with proper phases, they can be further accelerated to higher energy through cooperative actions of the ultra-intense laser pulse and the sheath field generated due to plasma expansion at the target surface. Our simulation results show that many of the laser accelerated low-energy electrons can be reflected back and accelerated several times until they gain enough energy to penetrate through the magnetic barrier. This is termed the " multiple acceleration mechanism”. Due to this mechanism, the electron acceleration efficiency in the foam-coated target with a thickness of several microns is significantly enhanced in comparison with that in the plane target. This enhancement in the electron acceleration efficiency will be beneficial to many important applications such as the fast ignition. Additionally, foam-coated targets with different bubble radii and layer thickness are also studied, and it is found that the yield of the high energy electrons increases with the radius of bubble size more efficiently than with the bubble thickness. In order to understand the physics more clearly, a single particle model is developed to analyze the simulation results.
      Corresponding author: Cai Hong-Bo, cai_hongbo@iapcm.ac.cn ; Zhu Shao-Ping, zhu_shaoping@iapcm.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the National Key R & D Program of China (Grant No. 2016YFA0401100), the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1730449), and the National Natural Science Foundation of China (Grant No. 11575030).
    [1]

    Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Chen H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702Google Scholar

    [2]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430Google Scholar

    [3]

    孔青, 朱立俊, 王加祥, 霍裕昆 1999 48 650Google Scholar

    Kong Q, Zhu L J, Wang J X, Huo Y K 1999 Acta Phys. Sin. 48 650Google Scholar

    [4]

    Zhou C T, He X T 2007 Opt. Lett. 32 2444Google Scholar

    [5]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [6]

    Kodama R, Tanaka K, Sentoku Y, Matsushita T, Takahashi K, Kato Y, Fujita H, Kitagawa Y, Kanabe T, Yamanaka T, Mima K 2000 Phys. Rev. Lett. 84 674Google Scholar

    [7]

    Bastiani S, Rousse A, Geindre J P, Audebert P, Quoix C, Hamoniaux G, Antonetti A, Gauthier J C 1997 Phys. Rev. E 56 7179Google Scholar

    [8]

    Ruhl H, Sentoku Y, Mima K, Tanaka K A, Kodama R 1999 Phys. Rev. Lett. 82 743Google Scholar

    [9]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [10]

    Marshall F J, McKenty P W, Delettrez J A, Epstein R, Knauer J P, Smalyuk V A, Frenje J A, Li C K, Petrasso R D, Séguin F H, Mancini R C 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [11]

    Tillman C, Persson A, Wahlstrom C G, Svanberg S, Herrlin K 1995 Appl. Phys. B 61 333Google Scholar

    [12]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Wood-worth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [13]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [14]

    Chen L M, Kando M, Ma J, Kotaki H, Fukuda Y, Hayashi Y, Daito I, Homma T, Ogura K, Mori M, Pirozhkov A S, Koga J, Daido H, Bulanov S V, Kimura T, Tajima T, Kato Y 2007 Appl. Phys. Lett. 90 211501Google Scholar

    [15]

    孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 61 075206Google Scholar

    Sun Y Q, Chen L M, Zhang L, Mao Q Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206Google Scholar

    [16]

    Kulcsár G, AlMawlawi D, Budnik F W, Herman P R, Moskovits M, Zhao L, Marjoribanks R S 2000 Phys. Rev. Lett. 84 5049Google Scholar

    [17]

    Lei A L, Tanaka K A, Kodama R, Kumar G R, Nagai K, Norimatsu T, Yabuuchi T, Mima K 2006 Phys. Rev. Lett. 96 255006Google Scholar

    [18]

    Cao L H, Chen M, Zhao Z Q, Cai H B, Wu S Z, Gu Y Q 2011 Phys. Plasmas 18 054501Google Scholar

    [19]

    余金清, 金晓林, 周维民, 李斌, 谷渝秋 2012 61 225202Google Scholar

    Yu J Q, Jin X L, Zhou W M, Li B, Gu Y Q 2012 Acta Phys. Sin. 61 225202Google Scholar

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Phys. Plasmas 15 030702Google Scholar

    [21]

    Hu G Y, Lei A L, Wang J W, Huang L G, Wang W T, Wang X, Xu Y, Shen B F, Liu J S, Yu W, Li R X, Xu Z Z 2010 Phys. Plasmas 17 083102Google Scholar

    [22]

    Tian Y, Liu J S, Wang W T, Wang C, Lu X M, Leng Y X, Liang X Y, Li R X, Xu Z Z 2014 Plasma Phys. Control. Fusion 56 075021Google Scholar

    [23]

    Wilks S C, Kruer W L 1997 IEEE J. Quantum Electron 33 1954Google Scholar

    [24]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [25]

    Sheng Z M, Mima K, Sentoku Y, Jovanović M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004Google Scholar

    [26]

    Gibbon P 2005 Short Pulse Laser Interactions with Matter: An Introduction (London: Imperial College Press) pp31−33

    [27]

    Landau B L, Lifshits E, Holbrow C H 1963 The Classical Theory of Fields (Oxford: Pergamon Press) p121

  • 图 1  (a) 泡沫靶密度分布示意图(局部); (b) 75$T_0$泡沫间隙的准静态电流(模拟窗口大小为$100\ \lambda_0 \times 16 \ \lambda_0$; 图中密度无量纲单位为$n_{\rm c}$, 电流无量纲单位为$en_{\rm c}c$)

    Figure 1.  (a) Schematic diagram of initial plasma density (local); (b) current in the foam target at 75T0. The simulation window size is $100\ \lambda_0 \times 16 \ \lambda_0$. The units of plasma density and current are $n_{\rm c}$, and $en_{\rm c}c$, respectively

    图 2  150$T_0$的泡沫区磁场分布 (a) 泡沫孔径0.075$\lambda_0$; (b) 泡沫孔径0.15$\lambda_0$; (c) 泡沫孔径0.6$\lambda_0$ (磁场无量纲单位为$m_{\rm e}\omega c/e$)

    Figure 2.  Magnetic field distribution in foam region at 150$T_0$: (a) Bubble radius is 0.075$\lambda_0$; (b) bubble radius is 0.15$\lambda_0$; (c) bubble radius is 0.6$\lambda_0$. The unit of magnetic field is $m_{\rm e}\omega c/e$

    图 3  50个初始位置随机分布在靶前表面的电子的轨迹(a)平面靶; (b)泡沫靶; 图中标注数字为运动到靶后区域单个电子的动能, 红色线表示其中一个电子加速后的轨迹

    Figure 3.  Trajectory of 50 electrons whose initial positions randomly distributed on the front surface of the target: (a) Planar target; (b) foam target. The labeled number is the kinetic energy of the electrons moving to the area behind the target. The red line is the trajectory of one of the accelerated electrons

    图 4  电子多次加速过程中的能量和位置随时间演化, 图中x = (40, 42)$\lambda_0$黄色标记区域为泡沫靶区

    Figure 4.  Evolution of electron energy and position with time in multiple acceleration of electron. Here, the x = (40, 42)$\lambda_0$ region marked with yellow is the foam region

    图 5  平面靶和不同孔径泡沫靶的电子能量密度空间分布 (a)平面靶; (b)泡沫孔径0.075$\lambda_0$; (c)泡沫孔径0.15$\lambda_0$; (d)泡沫孔径0.6$\lambda_0$; 电子能量密度无量纲单位为$n_{\rm c}m_{\rm e}c^2$

    Figure 5.  Spatial distribution of electron energy density for (a) planar target, and bubble target with bubble size of (b) 0.075$\lambda_0$, (c) 0.15$\lambda_0$, (d) 0.6$\lambda_0$. The unit of electron energy density is $n_{\rm c}m_{\rm e}c^2$

    图 6  (a)不同孔径泡沫靶的超热电子能谱; (b)不同厚度泡沫靶的超热电子能谱

    Figure 6.  (a) Electron energy spectra of foam targets with different bubble radii; (b) electron energy spectra of foam targets with different foam thicknesses

    Baidu
  • [1]

    Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Chen H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702Google Scholar

    [2]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430Google Scholar

    [3]

    孔青, 朱立俊, 王加祥, 霍裕昆 1999 48 650Google Scholar

    Kong Q, Zhu L J, Wang J X, Huo Y K 1999 Acta Phys. Sin. 48 650Google Scholar

    [4]

    Zhou C T, He X T 2007 Opt. Lett. 32 2444Google Scholar

    [5]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [6]

    Kodama R, Tanaka K, Sentoku Y, Matsushita T, Takahashi K, Kato Y, Fujita H, Kitagawa Y, Kanabe T, Yamanaka T, Mima K 2000 Phys. Rev. Lett. 84 674Google Scholar

    [7]

    Bastiani S, Rousse A, Geindre J P, Audebert P, Quoix C, Hamoniaux G, Antonetti A, Gauthier J C 1997 Phys. Rev. E 56 7179Google Scholar

    [8]

    Ruhl H, Sentoku Y, Mima K, Tanaka K A, Kodama R 1999 Phys. Rev. Lett. 82 743Google Scholar

    [9]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [10]

    Marshall F J, McKenty P W, Delettrez J A, Epstein R, Knauer J P, Smalyuk V A, Frenje J A, Li C K, Petrasso R D, Séguin F H, Mancini R C 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [11]

    Tillman C, Persson A, Wahlstrom C G, Svanberg S, Herrlin K 1995 Appl. Phys. B 61 333Google Scholar

    [12]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Wood-worth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [13]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [14]

    Chen L M, Kando M, Ma J, Kotaki H, Fukuda Y, Hayashi Y, Daito I, Homma T, Ogura K, Mori M, Pirozhkov A S, Koga J, Daido H, Bulanov S V, Kimura T, Tajima T, Kato Y 2007 Appl. Phys. Lett. 90 211501Google Scholar

    [15]

    孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 61 075206Google Scholar

    Sun Y Q, Chen L M, Zhang L, Mao Q Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206Google Scholar

    [16]

    Kulcsár G, AlMawlawi D, Budnik F W, Herman P R, Moskovits M, Zhao L, Marjoribanks R S 2000 Phys. Rev. Lett. 84 5049Google Scholar

    [17]

    Lei A L, Tanaka K A, Kodama R, Kumar G R, Nagai K, Norimatsu T, Yabuuchi T, Mima K 2006 Phys. Rev. Lett. 96 255006Google Scholar

    [18]

    Cao L H, Chen M, Zhao Z Q, Cai H B, Wu S Z, Gu Y Q 2011 Phys. Plasmas 18 054501Google Scholar

    [19]

    余金清, 金晓林, 周维民, 李斌, 谷渝秋 2012 61 225202Google Scholar

    Yu J Q, Jin X L, Zhou W M, Li B, Gu Y Q 2012 Acta Phys. Sin. 61 225202Google Scholar

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Phys. Plasmas 15 030702Google Scholar

    [21]

    Hu G Y, Lei A L, Wang J W, Huang L G, Wang W T, Wang X, Xu Y, Shen B F, Liu J S, Yu W, Li R X, Xu Z Z 2010 Phys. Plasmas 17 083102Google Scholar

    [22]

    Tian Y, Liu J S, Wang W T, Wang C, Lu X M, Leng Y X, Liang X Y, Li R X, Xu Z Z 2014 Plasma Phys. Control. Fusion 56 075021Google Scholar

    [23]

    Wilks S C, Kruer W L 1997 IEEE J. Quantum Electron 33 1954Google Scholar

    [24]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [25]

    Sheng Z M, Mima K, Sentoku Y, Jovanović M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004Google Scholar

    [26]

    Gibbon P 2005 Short Pulse Laser Interactions with Matter: An Introduction (London: Imperial College Press) pp31−33

    [27]

    Landau B L, Lifshits E, Holbrow C H 1963 The Classical Theory of Fields (Oxford: Pergamon Press) p121

  • [1] Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao. Influence of strong laser field on nuclear α decay. Acta Physica Sinica, 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [2] Ji Liang-Liang, Geng Xue-Song, Wu Yi-Tong, Shen Bai-Fei, Li Ru-Xin. Laser-driven radiation-reaction effect and polarized particle acceleration. Acta Physica Sinica, 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [3] Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3High order harmonics generation by relativistically circularly polarized laser-solid interaction. Acta Physica Sinica, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [4] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [5] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] Hu Yang, Yang Hai-Liang, Sun Jian-Feng, Sun Jiang, Zhang Peng-Fei. A method of measuring the incidence angle of intense electron beam. Acta Physica Sinica, 2015, 64(24): 245203. doi: 10.7498/aps.64.245203
    [7] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] Wu Feng-Juan, Zhou Wei-Min, Shan Lian-Qiang, Li Fang, Liu Dong-Xiao, Zhang Zhi-Meng, Li Bo-Yuan, Bi Bi, Wu Bo, Wang Wei-Wu, Zhang Feng, Gu Yu-Qiu, Zhang Bao-Han. Collimated electrons generated by intense laser pulse interaction with cone-structured targets using particle simulation. Acta Physica Sinica, 2014, 63(9): 094101. doi: 10.7498/aps.63.094101
    [9] Mu Jie, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical studies on intense laser-generated relativistic high-energy electrons via a thin cone target. Acta Physica Sinica, 2013, 62(13): 135202. doi: 10.7498/aps.62.135202
    [10] Li Yan, Cai Jie, Lü Peng, Zou Yang, Wan Ming-Zhen, Peng Dong-Jin, Gu Qian-Qian, Guan Qing-Feng. Surface microstructure and stress characteristics in pure titanium after high-current pulsed electron beam irradiation. Acta Physica Sinica, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [11] Guan Qing-Feng, Gu Qian-Qian, Li Yan, Qiu Dong-Hua, Peng Dong-Jin, Wang Xue-Tao. Microstructures in polycrystalline pure copper induced by high-current pulsed electron beamdeformation structures. Acta Physica Sinica, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [12] Yan Chun-Yan, Zhang Qiu-Ju, Luo Mu-Hua. Generation of attosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [13] Zhang Bao-Han, Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [14] Yan Chun-Yan, Zhang Qiu-Ju. Strong monochromatic harmonics generated by the interaction of two counter-propagating pulses with a foil target. Acta Physica Sinica, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [15] Guan Qing-Feng, Cheng Du-Qing, Qiu Dong-Hua, Zhu Jian, Wang Xue-Tao, Cheng Xiu-Wei. The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [16] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [17] Zhang Yong-Peng, Liu Guo-Zhi, Shao Hao, Yang Zhan-Feng, Song Zhi-Min, Lin Yu-Zheng. Steady transmission characteristics of intense electron beams in one-dimensional drift spaces. Acta Physica Sinica, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [18] Liao Qing-Liang, Zhang Yue, Huang Yun-Hua, Qi Jun-Jie, Gao Zhan-Jun, Xia Lian-Sheng, Zhang Huang. Short-pulsed explosive field emission and plasma expansion of carbon nanotube cathodes. Acta Physica Sinica, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [19] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [20] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
Metrics
  • Abstract views:  7570
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  28 December 2018
  • Accepted Date:  12 March 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回
Baidu
map