-
In this paper, polycrystalline BaFe4-xTi2+xO11 (x=0, 0.25, 0.5, 0.75, 1) samples have been synthesized by the conventional solid-state reaction method. X-ray diffraction (XRD) patterns of all the samples show that the diffraction peaks correspond to that of an R-type hexagonal ferrite structure, and no trace of second phase is detected. Measurement of X-ray photoelectron spectroscopy (XPS) reveals that most of the Fe ions in BaFe4Ti2O11 are trivalent and the fitting of two peaks in Fe 2p spectrum corresponding to different Fe ion sites, while the amount of Fe2+ ions increases with the increase of Ti ions in BaFe4-xTi2+xO11. The spectroscopy of Ti ions confirms that the valence of Ti in BaFe4-xTi2+xO11 are tetravalent. Magnetic susceptibility of BaFe4-xTi2+xO11 (x= 0, 0.25, 0.5, 0.75, 1) reveals two magnetic transitions at T1~250 K and T2~83 K, which indicate a complex magnetic order driven by competing interactions on a frustrated lattice with a noncentrosymmetric structure. For all the samples, the magnetic susceptibility obeys Curie-Weiss law above T1, and M-H curves exhibit a linear variation with magnetic field in this temperature range, which is consistent with the paramagnetic behavior. A decrease of the effective magnetic moment is due to the increase of Fe2+ ions with the increase of Ti content in BaFe4-xTi2+xO11. Below T1, the magnetization curve as a function of temperature (M-T) and the magnetization versus magnetic field (M-H) at different temperatures imply its characteristic of a typical canted antiferromagnetic or ferrimagnetic state. Meanwhile, the transition temperature T2 drops gradually with the increase in Ti content, which might be related to the change of occupying of Fe ions in the kagome layers.
-
Keywords:
- BaFe4-xTi2+xO11 /
- X-ray photoelectron spectroscopy /
- magnetism /
- effective magnetic moment
[1] Grundler D 2002 Grundler D 2002 Phys. World 15 39
[2] Awschalom D D, Flatt M E, Samarth N 2002 Sci. Am. 286 66 Sci. Am. 286 66
[3] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4] Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153
[5] Tian Y F, Hu S J, Yan S S, Mei L M 2013 Chin. Phys. B. 22 088505
[6] Zhang L G 1998 Progress in Physics 3 4 (in Chinese)[张立纲1998 物理学进展3 4]
[7] Dietl T, Ollno H, Matsukura F, Cibert J, Ferrand D 2000Science 287 1019]
[8] Furdyna J K 1988 J. Appl. Phys. 64 R29
[9] Ohno H, Munekata H, Penney T, Molnr S, Chang L L 1992 Phys. Rev. Lett. 68 2664
[10] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363
[11] Glen G L, Dodd C G 1968 J. Appl. Phys. 39 5372
[12] Wu Z Y, Ouvrard G, Gressier P, Natoli C R 1997 Phys. Rev. B 55 10382
[13] Zhao L, Lu P F, Yu Z Y, Ma S J, Ding L, Liu J T 2012 Chin. Phys. B 21 097103
[14] Verdoes D, Zandbergen H W, Ijdo D J W 1987 Mater. Res. Bull. 22 1
[15] Foo M L, Huang Q, Lynn J W, Lee W J, Klimczuk T, Hagemann I S, Ong N P, Cava R J 2006 J. Solid State Chem. 179 563
[16] Shlyk L, Ueland B G, Lynn J W, Huang Q, De Long L E, Parkin S 2010 Phys. Rev. B 81 184415
[17] Zhu P P 2010 Ms. D. Dissertation (Shenyang:Dongbei university) (in Chinese) [朱盼盼 2010 硕士学位论文 (沈阳:东北大学)]
[18] Schpp-Niewa B, Shlyk L, Kryukov S, De Long L, Niewa R 2007 Naturforsch Z. Teil B. 62 753
[19] Shlyk L, De Long L E, Kryukov S, Schpp-Niewa B, Niewa R 2008 J. Appl. Phys. 103 07D112
[20] Shlyk L, Kryukov S, Schpp-Niewa B, Niewa R, De Long L E 2008 Adv. Mater. 20 1315
[21] Obradors X, Collomb A, Pannetier J 1983 Mater. Res. Bull. 18 1543
[22] Shlyk L, Parkin S, De Long L E 2010 J. Appl. Phys. 107 09E109
[23] Yu T 2009 Ph. D. Dissertation (Tianjin:Tianjin university) (in Chinese) [于涛 2009 博士学位论文 (天津:天津大学)]
[24] Prokes S M, Gole J L, Chen X 2006 Adv. Funct. Mater. 15 161
[25] Prokes S M, Carlos W E, Gole J L 2003 Materials Research Society 738 239
-
[1] Grundler D 2002 Grundler D 2002 Phys. World 15 39
[2] Awschalom D D, Flatt M E, Samarth N 2002 Sci. Am. 286 66 Sci. Am. 286 66
[3] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4] Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153
[5] Tian Y F, Hu S J, Yan S S, Mei L M 2013 Chin. Phys. B. 22 088505
[6] Zhang L G 1998 Progress in Physics 3 4 (in Chinese)[张立纲1998 物理学进展3 4]
[7] Dietl T, Ollno H, Matsukura F, Cibert J, Ferrand D 2000Science 287 1019]
[8] Furdyna J K 1988 J. Appl. Phys. 64 R29
[9] Ohno H, Munekata H, Penney T, Molnr S, Chang L L 1992 Phys. Rev. Lett. 68 2664
[10] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363
[11] Glen G L, Dodd C G 1968 J. Appl. Phys. 39 5372
[12] Wu Z Y, Ouvrard G, Gressier P, Natoli C R 1997 Phys. Rev. B 55 10382
[13] Zhao L, Lu P F, Yu Z Y, Ma S J, Ding L, Liu J T 2012 Chin. Phys. B 21 097103
[14] Verdoes D, Zandbergen H W, Ijdo D J W 1987 Mater. Res. Bull. 22 1
[15] Foo M L, Huang Q, Lynn J W, Lee W J, Klimczuk T, Hagemann I S, Ong N P, Cava R J 2006 J. Solid State Chem. 179 563
[16] Shlyk L, Ueland B G, Lynn J W, Huang Q, De Long L E, Parkin S 2010 Phys. Rev. B 81 184415
[17] Zhu P P 2010 Ms. D. Dissertation (Shenyang:Dongbei university) (in Chinese) [朱盼盼 2010 硕士学位论文 (沈阳:东北大学)]
[18] Schpp-Niewa B, Shlyk L, Kryukov S, De Long L, Niewa R 2007 Naturforsch Z. Teil B. 62 753
[19] Shlyk L, De Long L E, Kryukov S, Schpp-Niewa B, Niewa R 2008 J. Appl. Phys. 103 07D112
[20] Shlyk L, Kryukov S, Schpp-Niewa B, Niewa R, De Long L E 2008 Adv. Mater. 20 1315
[21] Obradors X, Collomb A, Pannetier J 1983 Mater. Res. Bull. 18 1543
[22] Shlyk L, Parkin S, De Long L E 2010 J. Appl. Phys. 107 09E109
[23] Yu T 2009 Ph. D. Dissertation (Tianjin:Tianjin university) (in Chinese) [于涛 2009 博士学位论文 (天津:天津大学)]
[24] Prokes S M, Gole J L, Chen X 2006 Adv. Funct. Mater. 15 161
[25] Prokes S M, Carlos W E, Gole J L 2003 Materials Research Society 738 239
Catalog
Metrics
- Abstract views: 5254
- PDF Downloads: 147
- Cited By: 0