-
基于Stone-Wales缺陷演变理论与分子动力学、Monte Carlo计算方法, 进行了碳纳米管(CNTs)对接成异质结器件的计算模拟.首先, 提出了一种模拟CNTs端帽位置变化的新算法, 并计算模拟了单根CNT的端帽从开口到闭合的过程. Stone-Wales缺陷演变被设计模拟这些端帽变化的跃变过程, 以模拟C–C键的生成与断裂, 而分子动力学则作为跃变后构型弛豫的渐变模拟. 同时, 研究了不同管型CNTs的端帽打开并对接形成异质结的过程.研究结果显示, 对接初期在对接处先产生大量的缺陷, 以促进反应的发生. 这些缺陷趋向于演变成稳定的六元环结构, 或者五元环/七元环的结构, 使异质结趋于稳定.
-
关键词:
- 碳纳米管 /
- Monte Carlo /
- Stone-Wales缺陷 /
- 分子动力学
Based on Stone-Wales (SW) defect evolution theory and molecular dynamics, we simulate the docking process of two caped carbon nanotubes (CNTs) of different types to form a heterojunction using Monte Carlo methods. First, an algorithm for a fast simulation of the cap change in CNTs is put forward and the cap formation of single CNTs with open ends is simulated, by applying this method. SW defect evolution is designed as a leap change simulation of these caps, represents C-C bond formation and breakage, while molecular dynamics is used to simulate the gradient change of the relative bond distance between the C atoms. The coalescence process of forming heterojunction is also studied here. These simulations show that the process of docking is first to generate a large number of defects, which will precipitate the coalescence, then many defects disappear through the compound, finally the remaining defects transfer to the ends of this heterojunction in the form of pentagon/heptagon rings, thus leading to the reduced overall energy.-
Keywords:
- carbon nanotube /
- Monte Carlo /
- stone-wales defect /
- molecular dynamic
[1] Iijima S, Ichihashi T 1993 Nature 363 603
[2] Avouris P 2009 Phys. Today 62 34
[3] Avouris P, Appenzeller J, Martel R, Wind S J 2003 Proc. IEEE 91 1772
[4] Yang Z, Shi Y, Gu S L , Shen B, Zhang R, Zheng Y D 2002 Physics 31 624 (in Chinese) [杨铮, 施毅, 顾书林, 沈波, 张荣, 郑有炓 2002 物理 31 624]
[5] Hernandez E, Meunier V, Smith B W, Rurali R, Terrones H, Nardelli M B, Charlier J C 2003 Nano Lett. 3 1037
[6] Ohta Y, Okamoto Y, Page A J, Irle S, Morokuma K 2009 ACS Nano 3 3413
[7] Zhang Q M, Wells J, Gong X, Zhang Z 2004 Phys. Rev. B 69 205413
[8] Zhao Y, Yakobson B, Smalley R E 2002 Phys. Rev. Lett. 88 185501
[9] Ding F, Xu Z, Yakobson B, Young R, Kinloch I, Cui S, Monthioux M 2010 Phys. Rev. B 82 041403
[10] Smith B W, Monthioux M, Luzzi D E 1998 Nature 396 323
[11] Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665
[12] Ohta Y, Irle S, Morokuma K 2008 ACS Nano 2 1437
[13] Narlikar A V, Fu Y Y E 2009 Oxford Handbook of Nanoscience and Technology (Oxford: Oxford Univ. Press) p68
[14] Ewels C P, Heggie M I, Briddon P R 2002 Chem. Phys. Lett. 351 178
[15] Burgos J C, Reyna H, Yakobson B I, Balbuena P B 2010 J. Phys. Chem. C 114 6952
[16] Kim Y H, Lee I H, Chang K J, Lee S 2003 Phys. Rev. Lett. 90 065501
[17] Zhao Y, Smalley R, Yakobson B I 2002 Phys. Rev. B 66 195409
[18] Han S, Yoon M, Berber S, Park N, Osawa E, Ihm J, Tománek D 2004 Phys. Rev. B 70 113402
[19] Ma J, Alfé D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407
[20] LI F, Bai S, Zheng H, Zhou L G, Cheng H M 2001 New Carbon Mater. 16 73 (in Chinese) [李峰, 白朔, 郑宏, 周龙光, 成会明 2001 新型碳材料 16 73]
[21] Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013 62 016102]
[22] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H 1953 J. Chem. Phys. 21 6
[23] Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 61 036401]
-
[1] Iijima S, Ichihashi T 1993 Nature 363 603
[2] Avouris P 2009 Phys. Today 62 34
[3] Avouris P, Appenzeller J, Martel R, Wind S J 2003 Proc. IEEE 91 1772
[4] Yang Z, Shi Y, Gu S L , Shen B, Zhang R, Zheng Y D 2002 Physics 31 624 (in Chinese) [杨铮, 施毅, 顾书林, 沈波, 张荣, 郑有炓 2002 物理 31 624]
[5] Hernandez E, Meunier V, Smith B W, Rurali R, Terrones H, Nardelli M B, Charlier J C 2003 Nano Lett. 3 1037
[6] Ohta Y, Okamoto Y, Page A J, Irle S, Morokuma K 2009 ACS Nano 3 3413
[7] Zhang Q M, Wells J, Gong X, Zhang Z 2004 Phys. Rev. B 69 205413
[8] Zhao Y, Yakobson B, Smalley R E 2002 Phys. Rev. Lett. 88 185501
[9] Ding F, Xu Z, Yakobson B, Young R, Kinloch I, Cui S, Monthioux M 2010 Phys. Rev. B 82 041403
[10] Smith B W, Monthioux M, Luzzi D E 1998 Nature 396 323
[11] Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665
[12] Ohta Y, Irle S, Morokuma K 2008 ACS Nano 2 1437
[13] Narlikar A V, Fu Y Y E 2009 Oxford Handbook of Nanoscience and Technology (Oxford: Oxford Univ. Press) p68
[14] Ewels C P, Heggie M I, Briddon P R 2002 Chem. Phys. Lett. 351 178
[15] Burgos J C, Reyna H, Yakobson B I, Balbuena P B 2010 J. Phys. Chem. C 114 6952
[16] Kim Y H, Lee I H, Chang K J, Lee S 2003 Phys. Rev. Lett. 90 065501
[17] Zhao Y, Smalley R, Yakobson B I 2002 Phys. Rev. B 66 195409
[18] Han S, Yoon M, Berber S, Park N, Osawa E, Ihm J, Tománek D 2004 Phys. Rev. B 70 113402
[19] Ma J, Alfé D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407
[20] LI F, Bai S, Zheng H, Zhou L G, Cheng H M 2001 New Carbon Mater. 16 73 (in Chinese) [李峰, 白朔, 郑宏, 周龙光, 成会明 2001 新型碳材料 16 73]
[21] Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013 62 016102]
[22] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H 1953 J. Chem. Phys. 21 6
[23] Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 61 036401]
计量
- 文章访问数: 6520
- PDF下载量: 548
- 被引次数: 0