Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and microstucture of spray formed powder metallurgy superalloy FGH4095M

Wang Tian-Tian Ge Chang-Chun Jia Chong-Lin Wang Jie Gu Tian-Fu Wu Hai-Xin

Citation:

Fabrication and microstucture of spray formed powder metallurgy superalloy FGH4095M

Wang Tian-Tian, Ge Chang-Chun, Jia Chong-Lin, Wang Jie, Gu Tian-Fu, Wu Hai-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Spray forming is a kind of near-net-shaped rapid solidification process based on powder metallurgy gas atomization technology. In this work, the FGH4095M is fabricated by spray forming. The pre-alloy is prepared by vacuum induction melting and vacuum arc remelting techniques. Then the alloy is sprayed by SK2 facility with atomization gas nitrogen at University of Bremen in Germany. In this paper we study the density and microstructure of the spray-formed billet, especially the special morphology of γ’ phase. The results show that density is associated with different parts of the deposited billet. The relative density of the bottom part is higher (99.63%) than those in the other parts. The relative density of top part (98.91%) is lowest. After hot isostatic pressing, the relative density can be up to 100%. Uniform and fine equiaxed grains are the remarkable morphology of spray-formed alloy without prior particle boundary. The sizes of grains are in a range of about l0-40 μm and the grains at bottom part of billet are finest. The grain sizes of primary γ’ phase are in a range of about 0.6-0.8 μm, and the grain sizes of secondary γ’ phase in a range of about 0.1-0.5 μm as well as dispersed spherical tertiary γ’ particles with the sizes of 10-20 nm. The special morphology of secondary γ’ phase occurs with the splitting of γ’ particle, which is related to the low cooling rate of the depositing process. The splitting behavior reduces the total energy of γ’ particle. Total energy of γ’ particle includes elastic interaction energy, elastic strain energy and surface energy, among which the elastic strain energy is invariable. The surface energy increases with the splitting process and the elastic interaction energy reduces. The effect of elastic interaction energy on particles is the major reason why the total energy is reduced. The trend of splitting behavior is analyzed by calculating the equivalent diameter of splitting γ’ particle. It indicates that when the equivalent diameter is over 0.40 μm, there is the possibility to split. Subsequently, spray-formed FGH4095M billet is treated by hot isostatic pressing, isothermal forging and heat treatment process to obtain the FGH4095M alloy turbine disk. The research of tensile property of FGH4095M alloy turbine disk shows an excellent property either at room temperature or at high temperature for the optimized alloy. The relationship between special morphology of γ’ phase and excellent property needs further investigating.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171016).
    [1]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2010 Mater Chin. 29 23 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2010 中国材料进展 29 23]

    [2]

    Zhang Y W, Liu J T 2013 Mater. Chin. 32 1 (in Chinese) [张义文, 刘建涛 2013 中国材料进展 32 1]

    [3]

    Grant P S 1995 Prog. Mater. Sci. 39 497

    [4]

    Benz M G, Sawyer T F, Carter W T, Zabala R J, Dupree P L 1994 Powder Metall. 37 213

    [5]

    Fiedler H C, Sawyer T F, Kopp R W, Leatham A G 1987 JOM 39 28

    [6]

    Hohmann M, Pleier S 2009 Acta Metall. Sin. 18 15

    [7]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronautical Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [8]

    Xu W Y, Li Z, Zhang G Q, Yuan H, Li Z D, Yao R P, Tian S F, Xu S B 2005 The Tenth National Youth Materials Science and Technology Symposium C series Changsha, China, October, 2005 p67 (in Chinese) [许文勇, 李周, 张国庆, 袁华, 李正栋, 姚瑞平, 田世藩, 徐石斌 2005 第十届全国青年材料科学技术研讨会论文集(C辑) 中国长沙, 2005年10月, p67]

    [9]

    Kang F W 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [康福伟 2007 博士论文 (哈尔滨: 哈尔滨工业大学)]

    [10]

    Li Z, Zhang G Q, Tian S F, Yan M G 2005 Mater. Sci. Forum 475 2845

    [11]

    Ge C, Zhang Y, Xu Y, Shen W P, Zhang Y C, Wu H 2012 Superalloys (Hoboken: John Wiley & Sons Ltd.) p557

    [12]

    Zhang Y 2012 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [张宇 2012 博士论文 (北京:北京科技大学)]

    [13]

    Xu Y, Ge C C, Shu Q 2013 J. Iron Steel Res. Int. 20 59

    [14]

    Guo B, Ge C C, Xu Y, Zhang Y, Sun C S 2012 Chin. J. Nonferrous Met. 22 3029 (in Chinese) [郭彪, 葛昌纯, 徐轶, 张宇, 孙传水 2012 中国有色金属学报 22 3029]

    [15]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 208101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 208101]

    [16]

    Zhang Y, Ge C C, Guo B, Shen W P 2012 Acta Phys. Sin. 61 218102 (in Chinese) [张宇, 葛昌纯, 郭彪, 沈卫平 2012 61 218102]

    [17]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 196101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 196101]

    [18]

    Li H Y, Song X P, Wang Y L, Chen G L 2009 Rare Metal Mater. Eng. 38 64 (in Chinese) [李红宇, 宋西平, 王艳丽, 陈国良 2009 稀有金属材料与工程 38 64]

    [19]

    Qiu Y Y 1998 J. Alloys Compd. 270 145

    [20]

    Yu X H, Zhang J H, Hu Z Q 1994 Acta Metall. Sin. 30 551 (in Chinese) [于熙泓, 张静华, 胡壮麒 1994 金属学报 30 551]

    [21]

    Hu B F, Liu G Q, Wu K, Tian G F 2012 Acta Metall. Sin. 48 257 (in Chinese) [胡本芙, 刘国权, 吴凯, 田高峰 2012 金属学报 48 257]

    [22]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2012 Rare Metal Mater. Eng. 41 1267 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2012 稀有金属材料与工程 41 1267]

    [23]

    Baldan A 2002 J. Mater. Sci. 37 2379

    [24]

    Doi M, Wakatsuki T, Miyazaki T 1984 Mater. Sci. Eng. 67 247

    [25]

    Miyazaki T, Imamura H, Mori H, Kozaki T 1981 J. Mater. Sci. 16 1197

    [26]

    Miyazaki T, Imamura H, Kozaki T 1982 Mater. Sci. Eng. 54 9

    [27]

    Doi M, Miyazaki T, Wakatsuki T 1985 Mater. Sci. Eng. 74 139

    [28]

    He F, Wang W X, Yang W H, Zou J W, Wang X Q, Han Y F 2000 J. Aeronautical Mater. 20 22 (in Chinese) [何峰, 汪武祥, 杨万宏, 邹金文, 王旭青, 韩雅芳 2000 航空材料学报 20 22]

  • [1]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2010 Mater Chin. 29 23 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2010 中国材料进展 29 23]

    [2]

    Zhang Y W, Liu J T 2013 Mater. Chin. 32 1 (in Chinese) [张义文, 刘建涛 2013 中国材料进展 32 1]

    [3]

    Grant P S 1995 Prog. Mater. Sci. 39 497

    [4]

    Benz M G, Sawyer T F, Carter W T, Zabala R J, Dupree P L 1994 Powder Metall. 37 213

    [5]

    Fiedler H C, Sawyer T F, Kopp R W, Leatham A G 1987 JOM 39 28

    [6]

    Hohmann M, Pleier S 2009 Acta Metall. Sin. 18 15

    [7]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronautical Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [8]

    Xu W Y, Li Z, Zhang G Q, Yuan H, Li Z D, Yao R P, Tian S F, Xu S B 2005 The Tenth National Youth Materials Science and Technology Symposium C series Changsha, China, October, 2005 p67 (in Chinese) [许文勇, 李周, 张国庆, 袁华, 李正栋, 姚瑞平, 田世藩, 徐石斌 2005 第十届全国青年材料科学技术研讨会论文集(C辑) 中国长沙, 2005年10月, p67]

    [9]

    Kang F W 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [康福伟 2007 博士论文 (哈尔滨: 哈尔滨工业大学)]

    [10]

    Li Z, Zhang G Q, Tian S F, Yan M G 2005 Mater. Sci. Forum 475 2845

    [11]

    Ge C, Zhang Y, Xu Y, Shen W P, Zhang Y C, Wu H 2012 Superalloys (Hoboken: John Wiley & Sons Ltd.) p557

    [12]

    Zhang Y 2012 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [张宇 2012 博士论文 (北京:北京科技大学)]

    [13]

    Xu Y, Ge C C, Shu Q 2013 J. Iron Steel Res. Int. 20 59

    [14]

    Guo B, Ge C C, Xu Y, Zhang Y, Sun C S 2012 Chin. J. Nonferrous Met. 22 3029 (in Chinese) [郭彪, 葛昌纯, 徐轶, 张宇, 孙传水 2012 中国有色金属学报 22 3029]

    [15]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 208101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 208101]

    [16]

    Zhang Y, Ge C C, Guo B, Shen W P 2012 Acta Phys. Sin. 61 218102 (in Chinese) [张宇, 葛昌纯, 郭彪, 沈卫平 2012 61 218102]

    [17]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 196101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 196101]

    [18]

    Li H Y, Song X P, Wang Y L, Chen G L 2009 Rare Metal Mater. Eng. 38 64 (in Chinese) [李红宇, 宋西平, 王艳丽, 陈国良 2009 稀有金属材料与工程 38 64]

    [19]

    Qiu Y Y 1998 J. Alloys Compd. 270 145

    [20]

    Yu X H, Zhang J H, Hu Z Q 1994 Acta Metall. Sin. 30 551 (in Chinese) [于熙泓, 张静华, 胡壮麒 1994 金属学报 30 551]

    [21]

    Hu B F, Liu G Q, Wu K, Tian G F 2012 Acta Metall. Sin. 48 257 (in Chinese) [胡本芙, 刘国权, 吴凯, 田高峰 2012 金属学报 48 257]

    [22]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2012 Rare Metal Mater. Eng. 41 1267 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2012 稀有金属材料与工程 41 1267]

    [23]

    Baldan A 2002 J. Mater. Sci. 37 2379

    [24]

    Doi M, Wakatsuki T, Miyazaki T 1984 Mater. Sci. Eng. 67 247

    [25]

    Miyazaki T, Imamura H, Mori H, Kozaki T 1981 J. Mater. Sci. 16 1197

    [26]

    Miyazaki T, Imamura H, Kozaki T 1982 Mater. Sci. Eng. 54 9

    [27]

    Doi M, Miyazaki T, Wakatsuki T 1985 Mater. Sci. Eng. 74 139

    [28]

    He F, Wang W X, Yang W H, Zou J W, Wang X Q, Han Y F 2000 J. Aeronautical Mater. 20 22 (in Chinese) [何峰, 汪武祥, 杨万宏, 邹金文, 王旭青, 韩雅芳 2000 航空材料学报 20 22]

  • [1] Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Yu Dong-Liang, Liu Wen-Bo. Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy. Acta Physica Sinica, 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [2] Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu. Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy. Acta Physica Sinica, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [3] Lü Meng-Tian, Li Jin-Lin, Sun Jiu-Dong, Wang Zhen-Hua, Wang Qing, Dong Chuang. Design of cuboidal γ/γ′ coherent microstructure and its stability in low-density Co-Ni-Al-Mo-Cr-Ti/ Nb/Ta superalloys. Acta Physica Sinica, 2022, 71(11): 118102. doi: 10.7498/aps.71.20212444
    [4] Zhang Yuan-Yuan, Lin Xin, Yang Hai-Ou, Li Jia-Qiang, Ren Yong-Ming. Influence of powdered state on crystallization during laser solid forming Zr55Cu30Al10Ni5 bulk metallic glasses. Acta Physica Sinica, 2015, 64(16): 166402. doi: 10.7498/aps.64.166402
    [5] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton simulation of the molten pool of laser solid forming process. Acta Physica Sinica, 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [6] Du Li-Fei, Zhang Rong, Xing Hui, Zhang Li-Min, Zhang Yang, Liu Lin. Phase-field simulation of solidified microstructure evolution in the presence of lateral constraint. Acta Physica Sinica, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [7] Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi. Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy. Acta Physica Sinica, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [8] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [9] Lu Xiao-Yu, Liao Shuang, Ruan Ying, Dai Fu-Ping. Phase constitution and microstructure evolution of rapidly solidified Ti-Cu-Fe alloy. Acta Physica Sinica, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [10] Zhang Yu, Ge Chang-Chun, Shen Wei-Ping, Qiu Cheng-Jie. Microstructure of spray-formed FGH4095 after static recrystallization. Acta Physica Sinica, 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [11] Zhang Yu, Ge Chang-Chun, Guo Biao, Shen Wei-Ping. Hot deformation behavior of spray formed FGH4095. Acta Physica Sinica, 2012, 61(21): 218102. doi: 10.7498/aps.61.218102
    [12] Chen Yan, Liu Lin, Liu Jian-Hua, Zhang Rui-Jun. Effect of high pressure treatment on microstructure and resistivity of Cu75.15Al24.85 alloy. Acta Physica Sinica, 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [13] Zhang Yu, Ge Chang-Chun, Shen Wei-Ping, Qiu Cheng-Jie. Microstructure of spray-formed superalloy FGH4095. Acta Physica Sinica, 2012, 61(19): 196101. doi: 10.7498/aps.61.196101
    [14] Wang Gang, Xu Dong-Sheng, Yang Rui. Phase field simulation on sideplates formation in Ti-6Al-4V alloy. Acta Physica Sinica, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [15] Liu Gui-Li. The electronic structure of the microstructure of Mg-Zr alloys. Acta Physica Sinica, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [16] Zhang Yu-Xiang, Wang Jin-Cheng, Yang Gen-Cang, Zhou Yao-He. Phase-field simulation of the influence of elastic field on microstructure evolution and equilibrium composition of precipitation. Acta Physica Sinica, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [17] Bao Wei-Ping, Xu Guang-Ming, Ban Chun-Yan, Cui Jian-Zhong. Effect of magnetostatic field on the microstructure of magnesium alloy. Acta Physica Sinica, 2004, 53(6): 2024-2028. doi: 10.7498/aps.53.2024
    [18] Xu Jin-Feng, Wei Bing-Bo. Liquid phase flow and microstructure formation during rapid solidification. Acta Physica Sinica, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
    [19] Zhang Peng, Du Yun-Hui, Zeng Da-Ben. . Acta Physica Sinica, 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
    [20] WANG WEN-KUI, HE SHU-AN, H. IWASAKI, Y. SYONO, T. GOTO. PHASES STABILITY OF AN AMORPHOUS Co80B20 ALLOY UNDER HIGH-TEMPERATURE AND HIGH-PRESSURE. Acta Physica Sinica, 1984, 33(7): 914-920. doi: 10.7498/aps.33.914
Metrics
  • Abstract views:  6515
  • PDF Downloads:  436
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2014
  • Accepted Date:  03 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map