-
基于金属熔体结构的遗传性, 激光熔池的快速熔凝导致粉末的晶化状态可能会对最终成形件的晶化产生重要影响, 理清其影响规律对于制备大块非晶合金具有重要意义. 本文选取等离子旋转电极法所制粉末和1000 K退火态粉末为沉积材料, 采用激光立体成形技术沉积Zr55Cu30Al10Ni5块体非晶合金, 考察了粉末中已有晶化相对熔池及热影响区晶化行为的影响. 结果发现, 原始粉末组织由非晶相及粗大的Al5Ni3Zr2相组成; 当激光线能量较低时, 相应熔覆层的熔池和热影响区皆含有Al5Ni3Zr2相; 随着线能量的提高, 熔池中Al5Ni3Zr2相消失, 保持了非晶态, 但热影响区晶化加重, 并有大量Al5Ni3Zr2相析出; 当采用退火态粉末时, 即使线能量较小, 相应熔覆层仍主要由非晶构成, 几乎无Al5Ni3Zr2相析出. 这是由于原始粉末在退火时其微观结构发生重排, 与Al5Ni3Zr2相关的原子短程/中程有序结构减少, 导致已沉积层非晶区的热稳定性提高, 不利于Al5Ni3Zr2相析出. 可见, 提高线能量将会加剧非晶沉积体的晶化, 而粉末中的Al5Ni3Zr2团簇相状态对Zr55Cu30Al10Ni5合金沉积层的晶化有重要影响.
-
关键词:
- Zr55Cu30Al10Ni5块体非晶合金 /
- 激光立体成形 /
- 退火处理 /
- 粉末状态
Laser solid forming (LSF) is a viable and promising manufacturing technique for preparing bulk metallic glasses (BMGs) without size limitation. Owing to the structural heredity of alloy melts, the crystallization characteristic of the powder has an important influence on that of the deposit during LSF process. In this work, the as-prepared Zr55Cu30Al10Ni5 (Zr55) alloy powder and the Zr55 alloy powder annealed at 1000 K are used for LSF of Zr55 BMGs. The influence of the crystallization characteristic of Zr55 alloy powder on the crystallization behavior of the remelted zone (RZ) and heat affected zone (HAZ) in the deposit are investigated. It is found that the as-prepared Zr55 powder prepared by plasma rotating electrode process (PREP) is composed of the amorphous phase and Al5Ni3Zr2 phase. When the heat input of laser is low, there exist some Al5Ni3Zr2 residual phases in the amorphous matrix in the RZ, and there appear some Cu10Zr7, CuZr2 and NiZr2 phases besides the Al5Ni3Zr2 phase in the HAZ for the deposit fabricated by as-prepared Zr55 powders. With the increase of the heat input of laser, the RZ remains the amorphous state since the Al5Ni3Zr2 phase is completely remelted, while there are a large quantity of Al5Ni3Zr2 phases and some other crystallization phases precipitated in the HAZ because the heating and cooling rate decrease in the HAZ during LSF. Fabricated by the fully crystallized annealed powder, the deposit is mainly of the amorphous phase, and almost no Al5Ni3Zr2 phase is found even if the incident laser power is low. It is shown that the crystallization of the deposit fabricated by the annealed powder at the low heat input does not change remarkably with the increase of the deposited layers. The Zr55 deposit with five deposited layers could still keep large volume fraction of amorphous phase. This is mainly because the powder experiences the structure relaxation entirely during the annealing treatment, and the volume fraction of the short/medium-range ordered structure associated with the Al5Ni3Zr2 phase in the powder is reduced. Therefore, the volume fraction of the Al5Ni3Zr2 clusters in re-solidified amorphous RZ in the deposited layer decreases during LSF, which is conducible to the increase of the thermal stability of the already-deposited layer. In result, the area of the HAZ in the subsequent deposition decreases and the precipitation of Al5Ni3Zr2 phase is suppressed. In conclusion, increasing the heat input of laser aggravates the crystallization of the deposited layers, and the Al5Ni3Zr2 cluster in the powder has an important influence on the crystallization behavior of the Zr55 deposited layers.-
Keywords:
- Zr55Cu30Al10Ni5 bulk metallic glass /
- laser solid forming /
- annealed /
- powder state
[1] Hu Z Q, Zhang H F 2010 Acta Metall. Sin. 46 1391 (in Chinese) [胡壮麒, 张海峰 2010 金属学报 46 1391]
[2] Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101
[3] Imran M, Hussain F, Rashid M, Cai Y Q, Ahmad S A 2013 Chin. Phys. B 22 096101
[4] Inoue A 2000 Acta Mater. 48 279
[5] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37
[6] Gan Y, Wang W X, Guan Z S, Cui Z Q 2015 Opt. Laser Technol. 69 17
[7] Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Huang W D 2012 Intermetallics 22 110
[8] Zheng B, Zhou Y, Smugeresky J E, Lavernia E J 2009 Metall. Mater. Trans. A 40 1235
[9] Ye X Y, Shin Y C 2014 Surf. Coat. Tech. 239 34
[10] Tong Y Q, Shen B C, Gan Y S, Yan Z J 2005 Acta Phys. Sin. 54 4557 (in Chinese) [同育全, 申宝成, 甘玉生, 闫志杰 2005 54 4557]
[11] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101]
[12] Balla V K, Bandyopadhyay A 2010 Surf. Coat. Tech. 205 2661
[13] Zhang Y, Li S K, Chen S D 1998 Powder Metall. Ind. 8 18 (in Chinese) [张莹, 李世魁, 陈生大 1998 粉末冶金工业 8 18]
[14] Lin X H, Johnson W L 1997 Mater. Trans. 38 473
[15] Wosch E, Feldhaus S, Elgammal T 1995 ISIJ Int. 35 764
[16] Hu Q, Lin X, Yang G L, Huang W D, Li J F 2012 Acta Metall. Sin. 48 1467 (in Chinese) [胡桥, 林鑫, 杨高林, 黄卫东, 李金富 2012 金属学报 48 1467]
[17] Chen J X, Wang Q, Dong C 2011 Rare Metal Mat. Eng. 40 69 (in Chinese) [陈季香, 王清, 董闯 2011 稀有金属材料与工程 40 69]
[18] Sutton M, Yang Y S, Mainville J, Jordan-Sweet J L, Ludwig K F, Stephenson G B 1989 Phys. Rev. Lett. 62 288
[19] Murty B S, Ping D H, Hono K, Inoue A 2000 Acta Mater. 48 3985
[20] Eckert J, Mattern N, Zinkevitch M, Seidel M 1998 Mater. Trans. 39 623
[21] Tariq N H, Hasan B A, Akhter J I 2009 J. Alloy. Compd. 485 212
[22] Tariq N H, Iqbal M, Shaikh MA, Akhter J I, Ahmad M, Ali G, Hu Z Q 2008 J. Alloy. Compd. 460 258
[23] Xing J, Sun X G, Gao Y Q 2009 Acta Photo. Sin. 38 1327 (in Chinese) [邢建, 孙晓刚, 高益庆 2009 光子学报 38 1327]
[24] Zhang W H 1983 Fundamentals of Statistical Physics (Beijing: Tsinghua University Press) p208 (in Chinese) [朱文浩 1983 统计物理学基础 (北京: 清华大学出版社) 第208页]
[25] Yamasaki M, Kagao S, Kawamura Y 2005 Scripta Mater. 53 63
[26] Wang W H, Dong C, Shek C H 2004 Mat. Sci. Eng. R 44 45
[27] Bai Y W, Bian X F, Lv X Q, Pan S P, Qin J Y, Qin X B, Hu L N 2012 J. Appl. Phys. 112 083524
[28] Zhao Y 2007 M. S. Dissertation (Changchun:Jilin University) (in Chinese) [赵宇 2007 硕士学位论文 (长春: 吉林大学)]
[29] Chen J X, Dong C, Wang Q 2011 Chem. Phys. Lett. 502 178
[30] Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]
[31] Zhang Q S, Deng Y F, He L L, Zhang H F, Ding B Z, Hu Z Q 2003 Acta Metall. Sin. 39 301 (in Chinese) [张庆生, 邓玉福, 贺连龙, 张海峰, 丁炳哲, 胡壮麒 2003 金属学报 39 301]
-
[1] Hu Z Q, Zhang H F 2010 Acta Metall. Sin. 46 1391 (in Chinese) [胡壮麒, 张海峰 2010 金属学报 46 1391]
[2] Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101
[3] Imran M, Hussain F, Rashid M, Cai Y Q, Ahmad S A 2013 Chin. Phys. B 22 096101
[4] Inoue A 2000 Acta Mater. 48 279
[5] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37
[6] Gan Y, Wang W X, Guan Z S, Cui Z Q 2015 Opt. Laser Technol. 69 17
[7] Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Huang W D 2012 Intermetallics 22 110
[8] Zheng B, Zhou Y, Smugeresky J E, Lavernia E J 2009 Metall. Mater. Trans. A 40 1235
[9] Ye X Y, Shin Y C 2014 Surf. Coat. Tech. 239 34
[10] Tong Y Q, Shen B C, Gan Y S, Yan Z J 2005 Acta Phys. Sin. 54 4557 (in Chinese) [同育全, 申宝成, 甘玉生, 闫志杰 2005 54 4557]
[11] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101]
[12] Balla V K, Bandyopadhyay A 2010 Surf. Coat. Tech. 205 2661
[13] Zhang Y, Li S K, Chen S D 1998 Powder Metall. Ind. 8 18 (in Chinese) [张莹, 李世魁, 陈生大 1998 粉末冶金工业 8 18]
[14] Lin X H, Johnson W L 1997 Mater. Trans. 38 473
[15] Wosch E, Feldhaus S, Elgammal T 1995 ISIJ Int. 35 764
[16] Hu Q, Lin X, Yang G L, Huang W D, Li J F 2012 Acta Metall. Sin. 48 1467 (in Chinese) [胡桥, 林鑫, 杨高林, 黄卫东, 李金富 2012 金属学报 48 1467]
[17] Chen J X, Wang Q, Dong C 2011 Rare Metal Mat. Eng. 40 69 (in Chinese) [陈季香, 王清, 董闯 2011 稀有金属材料与工程 40 69]
[18] Sutton M, Yang Y S, Mainville J, Jordan-Sweet J L, Ludwig K F, Stephenson G B 1989 Phys. Rev. Lett. 62 288
[19] Murty B S, Ping D H, Hono K, Inoue A 2000 Acta Mater. 48 3985
[20] Eckert J, Mattern N, Zinkevitch M, Seidel M 1998 Mater. Trans. 39 623
[21] Tariq N H, Hasan B A, Akhter J I 2009 J. Alloy. Compd. 485 212
[22] Tariq N H, Iqbal M, Shaikh MA, Akhter J I, Ahmad M, Ali G, Hu Z Q 2008 J. Alloy. Compd. 460 258
[23] Xing J, Sun X G, Gao Y Q 2009 Acta Photo. Sin. 38 1327 (in Chinese) [邢建, 孙晓刚, 高益庆 2009 光子学报 38 1327]
[24] Zhang W H 1983 Fundamentals of Statistical Physics (Beijing: Tsinghua University Press) p208 (in Chinese) [朱文浩 1983 统计物理学基础 (北京: 清华大学出版社) 第208页]
[25] Yamasaki M, Kagao S, Kawamura Y 2005 Scripta Mater. 53 63
[26] Wang W H, Dong C, Shek C H 2004 Mat. Sci. Eng. R 44 45
[27] Bai Y W, Bian X F, Lv X Q, Pan S P, Qin J Y, Qin X B, Hu L N 2012 J. Appl. Phys. 112 083524
[28] Zhao Y 2007 M. S. Dissertation (Changchun:Jilin University) (in Chinese) [赵宇 2007 硕士学位论文 (长春: 吉林大学)]
[29] Chen J X, Dong C, Wang Q 2011 Chem. Phys. Lett. 502 178
[30] Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]
[31] Zhang Q S, Deng Y F, He L L, Zhang H F, Ding B Z, Hu Z Q 2003 Acta Metall. Sin. 39 301 (in Chinese) [张庆生, 邓玉福, 贺连龙, 张海峰, 丁炳哲, 胡壮麒 2003 金属学报 39 301]
计量
- 文章访问数: 6144
- PDF下载量: 276
- 被引次数: 0