-
采用落管无容器处理技术实现了Ti61.2Cu32.5Fe6.3三元包共晶合金在自由落体条件下的快速凝固, 获得了直径为801120 m液滴的凝固组织. 实验中获得的过冷度范围为34293 K, 最大过冷度达0.23TL. 研究发现, 在自由落体条件下, 由于受到无容器、微重力、超高真空等因素的影响, 合金熔体的凝固组织中包含Cu0.8Fe0.2Ti相、CuTi2相和CuTi3 相, 显著偏离了平衡状态. Cu0.8Fe0.2Ti为初生相, 同时又与CuTi2相形成两相共晶; CuTi3相则呈现枝晶形貌, 并发生了明显的溶质截留效应. 随着过冷度的增大, 共晶组织由层片共晶向不规则共晶转变, 形貌由长条状共晶团变为椭球状共晶团, 最终变为球状共晶胞; Cu0.8Fe0.2Ti相枝晶形貌由粗大枝晶变为碎断枝晶, 进一步变成不规则的粒状晶粒; CuTi3相枝晶则由碎块状转变为完整枝晶.Ternary Ti61.2Cu32.5Fe6.3 quasiperitectic alloy is rapidly solidified in drop tube. The diameter of the obtained droplets varies from 80 to 1120 m. The theoretical analysis indicates that the range of undercooling is from 34 to 293 K (0.23TL). Due to the influences of containerless, microgravity, ultrahigh vacuum, etc, the microstructure of solidified alloy is composed of Cu0.8Fe0.2Ti phase, CuTi2 phase and CuTi3 phase. This result deviates appreciably from the equilibrium state. CuTi3 phase exhibits a conspicuous solute trapping effect during rapid solidification. The microstructure of alloy consists chiefly of eutectic (Cu0.8Fe0.2Ti and CuTi2 phases) and dendrites (Cu0.8Fe0.2Ti, CuTi3) structure. With the increase of undercooling, the microstructure of eutectic experiences a transition from strip eutectic cell to ellipsoidal eutectic cell to spherical eutectic cell; the morphology of Cu0.8Fe0.2Ti dendrite experiences a transition from coarse dendrites to broken dendrites to anomalous grain; while the morphology of CuTi3 dendrite changes from small block to coarse dendrite.
-
Keywords:
- phase constitution /
- drop tube /
- rapid solidification /
- microstructure evolution
[1] Mashimo T, Huang X S, Fan X 2002 Phys. Rev. B 66 132407
[2] Alford T L, Adams D, Laursen T, Ullrich B M 1996 Appl. Rhys. Lett. 68 3251
[3] Ager J W, Drory M D 1993 Phys. Rev. B 48 2601
[4] Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta Phys. Sin. 57 3048 (in Chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志 2008 57 3048]
[5] Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Löffler J F 2010 Intermetallics 18 374
[6] van Beek J A, Kodensov A A, van Loo F J J 1995 J. Alloy Compd. 217 97
[7] Leyens C, Peters M (Translated by Chen Z H, et al.) 2005 Titanium and Titanium Alloys (Beijing: Chemical Industry Press) pp1-30 (in Chinese) [莱茵斯 C, 皮特尔斯M著, 陈振华等译 2005 钛与钛合金 (北京: 化学工业出版社) 第1—30页]
[8] Kurz W, Fisher D J (Translated by Li J G, Hu Q D) 2010 Fundamentals of Solidification (Beijing: Higher Education Press) pp79-96 (in Chinese) [库尔兹 W, 费舍尔 D J著, 李建国, 胡侨丹译 2010 凝固原理 (北京: 高等教育出版社) 第79—96页]
[9] Plapp M, Karma A 2002 Phys. Rev. E 66 061608
[10] Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506
[11] Li Z Q, Wang W L, Zhai W, Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese) [李志强, 王伟丽, 翟薇, 魏炳波 2011 60 108101]
[12] Akamatsu S, Faivre G 2000 Phys. Rev. E 61 3757
[13] Cockayne E, Widom M 1998 Phys. Rev. Lett. 81 598
[14] Ingerly D B, Swenson D, Jan C H, Chang Y A 1996 J. Appl. Phys. 80 543
[15] Provenzano V, Shapiro A J, Shull R D, King T, Conavan E, Shirron P, DiPirro M 2004 J. Appl. Phys. 95 6909
[16] Mei C X, Ruan Y, Dai F P, Wei B B 2007 Acta Phys. Sin. 56 988 (in Chinese) [梅策香, 阮莹, 代富平, 魏炳波 2007 56 988]
[17] Yin H Y, Lu X Y 2008 Acta Phys. Sin. 57 4341 (in Chinese) [殷涵玉, 鲁晓宇 2008 57 4341]
[18] Raghavan V 2002 J. Phase Equilib. 23 172
[19] Zhang X H, Ruan Y, Wang W L, Wei B B 2007 Sci. China G 50 491
[20] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[21] Rogers J R, Davis R H 1990 Metall. Mater. Trans. A 21A 59
[22] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H 2000 Sci. China E 30 9 (in Chinese) [坚增运, 常芳娥, 马卫红, 严文, 杨根仓, 周尧和 2000 中国科学E辑 30 9]
[23] Chen B, Xiong H P, Mao W, Cheng Y Y 2010 J. Aero. Mater. 30 35 (in Chinese) [陈波, 熊华平, 毛唯, 程耀永 2010 航空材料学报 30 35]
[24] Liu W, Zhao H S, He J S, Zhang B G 2007 Trans. China Weld. Inst. 28 81 [刘伟, 赵海生, 何景山, 张秉刚 2007 焊接学报 28 81]
-
[1] Mashimo T, Huang X S, Fan X 2002 Phys. Rev. B 66 132407
[2] Alford T L, Adams D, Laursen T, Ullrich B M 1996 Appl. Rhys. Lett. 68 3251
[3] Ager J W, Drory M D 1993 Phys. Rev. B 48 2601
[4] Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta Phys. Sin. 57 3048 (in Chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志 2008 57 3048]
[5] Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Löffler J F 2010 Intermetallics 18 374
[6] van Beek J A, Kodensov A A, van Loo F J J 1995 J. Alloy Compd. 217 97
[7] Leyens C, Peters M (Translated by Chen Z H, et al.) 2005 Titanium and Titanium Alloys (Beijing: Chemical Industry Press) pp1-30 (in Chinese) [莱茵斯 C, 皮特尔斯M著, 陈振华等译 2005 钛与钛合金 (北京: 化学工业出版社) 第1—30页]
[8] Kurz W, Fisher D J (Translated by Li J G, Hu Q D) 2010 Fundamentals of Solidification (Beijing: Higher Education Press) pp79-96 (in Chinese) [库尔兹 W, 费舍尔 D J著, 李建国, 胡侨丹译 2010 凝固原理 (北京: 高等教育出版社) 第79—96页]
[9] Plapp M, Karma A 2002 Phys. Rev. E 66 061608
[10] Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506
[11] Li Z Q, Wang W L, Zhai W, Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese) [李志强, 王伟丽, 翟薇, 魏炳波 2011 60 108101]
[12] Akamatsu S, Faivre G 2000 Phys. Rev. E 61 3757
[13] Cockayne E, Widom M 1998 Phys. Rev. Lett. 81 598
[14] Ingerly D B, Swenson D, Jan C H, Chang Y A 1996 J. Appl. Phys. 80 543
[15] Provenzano V, Shapiro A J, Shull R D, King T, Conavan E, Shirron P, DiPirro M 2004 J. Appl. Phys. 95 6909
[16] Mei C X, Ruan Y, Dai F P, Wei B B 2007 Acta Phys. Sin. 56 988 (in Chinese) [梅策香, 阮莹, 代富平, 魏炳波 2007 56 988]
[17] Yin H Y, Lu X Y 2008 Acta Phys. Sin. 57 4341 (in Chinese) [殷涵玉, 鲁晓宇 2008 57 4341]
[18] Raghavan V 2002 J. Phase Equilib. 23 172
[19] Zhang X H, Ruan Y, Wang W L, Wei B B 2007 Sci. China G 50 491
[20] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[21] Rogers J R, Davis R H 1990 Metall. Mater. Trans. A 21A 59
[22] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H 2000 Sci. China E 30 9 (in Chinese) [坚增运, 常芳娥, 马卫红, 严文, 杨根仓, 周尧和 2000 中国科学E辑 30 9]
[23] Chen B, Xiong H P, Mao W, Cheng Y Y 2010 J. Aero. Mater. 30 35 (in Chinese) [陈波, 熊华平, 毛唯, 程耀永 2010 航空材料学报 30 35]
[24] Liu W, Zhao H S, He J S, Zhang B G 2007 Trans. China Weld. Inst. 28 81 [刘伟, 赵海生, 何景山, 张秉刚 2007 焊接学报 28 81]
计量
- 文章访问数: 7819
- PDF下载量: 589
- 被引次数: 0