-
Ternary Ti61.2Cu32.5Fe6.3 quasiperitectic alloy is rapidly solidified in drop tube. The diameter of the obtained droplets varies from 80 to 1120 m. The theoretical analysis indicates that the range of undercooling is from 34 to 293 K (0.23TL). Due to the influences of containerless, microgravity, ultrahigh vacuum, etc, the microstructure of solidified alloy is composed of Cu0.8Fe0.2Ti phase, CuTi2 phase and CuTi3 phase. This result deviates appreciably from the equilibrium state. CuTi3 phase exhibits a conspicuous solute trapping effect during rapid solidification. The microstructure of alloy consists chiefly of eutectic (Cu0.8Fe0.2Ti and CuTi2 phases) and dendrites (Cu0.8Fe0.2Ti, CuTi3) structure. With the increase of undercooling, the microstructure of eutectic experiences a transition from strip eutectic cell to ellipsoidal eutectic cell to spherical eutectic cell; the morphology of Cu0.8Fe0.2Ti dendrite experiences a transition from coarse dendrites to broken dendrites to anomalous grain; while the morphology of CuTi3 dendrite changes from small block to coarse dendrite.
-
Keywords:
- phase constitution /
- drop tube /
- rapid solidification /
- microstructure evolution
[1] Mashimo T, Huang X S, Fan X 2002 Phys. Rev. B 66 132407
[2] Alford T L, Adams D, Laursen T, Ullrich B M 1996 Appl. Rhys. Lett. 68 3251
[3] Ager J W, Drory M D 1993 Phys. Rev. B 48 2601
[4] Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta Phys. Sin. 57 3048 (in Chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志 2008 57 3048]
[5] Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Löffler J F 2010 Intermetallics 18 374
[6] van Beek J A, Kodensov A A, van Loo F J J 1995 J. Alloy Compd. 217 97
[7] Leyens C, Peters M (Translated by Chen Z H, et al.) 2005 Titanium and Titanium Alloys (Beijing: Chemical Industry Press) pp1-30 (in Chinese) [莱茵斯 C, 皮特尔斯M著, 陈振华等译 2005 钛与钛合金 (北京: 化学工业出版社) 第1—30页]
[8] Kurz W, Fisher D J (Translated by Li J G, Hu Q D) 2010 Fundamentals of Solidification (Beijing: Higher Education Press) pp79-96 (in Chinese) [库尔兹 W, 费舍尔 D J著, 李建国, 胡侨丹译 2010 凝固原理 (北京: 高等教育出版社) 第79—96页]
[9] Plapp M, Karma A 2002 Phys. Rev. E 66 061608
[10] Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506
[11] Li Z Q, Wang W L, Zhai W, Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese) [李志强, 王伟丽, 翟薇, 魏炳波 2011 60 108101]
[12] Akamatsu S, Faivre G 2000 Phys. Rev. E 61 3757
[13] Cockayne E, Widom M 1998 Phys. Rev. Lett. 81 598
[14] Ingerly D B, Swenson D, Jan C H, Chang Y A 1996 J. Appl. Phys. 80 543
[15] Provenzano V, Shapiro A J, Shull R D, King T, Conavan E, Shirron P, DiPirro M 2004 J. Appl. Phys. 95 6909
[16] Mei C X, Ruan Y, Dai F P, Wei B B 2007 Acta Phys. Sin. 56 988 (in Chinese) [梅策香, 阮莹, 代富平, 魏炳波 2007 56 988]
[17] Yin H Y, Lu X Y 2008 Acta Phys. Sin. 57 4341 (in Chinese) [殷涵玉, 鲁晓宇 2008 57 4341]
[18] Raghavan V 2002 J. Phase Equilib. 23 172
[19] Zhang X H, Ruan Y, Wang W L, Wei B B 2007 Sci. China G 50 491
[20] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[21] Rogers J R, Davis R H 1990 Metall. Mater. Trans. A 21A 59
[22] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H 2000 Sci. China E 30 9 (in Chinese) [坚增运, 常芳娥, 马卫红, 严文, 杨根仓, 周尧和 2000 中国科学E辑 30 9]
[23] Chen B, Xiong H P, Mao W, Cheng Y Y 2010 J. Aero. Mater. 30 35 (in Chinese) [陈波, 熊华平, 毛唯, 程耀永 2010 航空材料学报 30 35]
[24] Liu W, Zhao H S, He J S, Zhang B G 2007 Trans. China Weld. Inst. 28 81 [刘伟, 赵海生, 何景山, 张秉刚 2007 焊接学报 28 81]
-
[1] Mashimo T, Huang X S, Fan X 2002 Phys. Rev. B 66 132407
[2] Alford T L, Adams D, Laursen T, Ullrich B M 1996 Appl. Rhys. Lett. 68 3251
[3] Ager J W, Drory M D 1993 Phys. Rev. B 48 2601
[4] Wang K F, Guo J J, Mi G F, Li B S, Fu H Z 2008 Acta Phys. Sin. 57 3048 (in Chinese) [王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志 2008 57 3048]
[5] Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Löffler J F 2010 Intermetallics 18 374
[6] van Beek J A, Kodensov A A, van Loo F J J 1995 J. Alloy Compd. 217 97
[7] Leyens C, Peters M (Translated by Chen Z H, et al.) 2005 Titanium and Titanium Alloys (Beijing: Chemical Industry Press) pp1-30 (in Chinese) [莱茵斯 C, 皮特尔斯M著, 陈振华等译 2005 钛与钛合金 (北京: 化学工业出版社) 第1—30页]
[8] Kurz W, Fisher D J (Translated by Li J G, Hu Q D) 2010 Fundamentals of Solidification (Beijing: Higher Education Press) pp79-96 (in Chinese) [库尔兹 W, 费舍尔 D J著, 李建国, 胡侨丹译 2010 凝固原理 (北京: 高等教育出版社) 第79—96页]
[9] Plapp M, Karma A 2002 Phys. Rev. E 66 061608
[10] Wang H P, Chang J, Wei B 2009 J. Appl. Phys. 106 033506
[11] Li Z Q, Wang W L, Zhai W, Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese) [李志强, 王伟丽, 翟薇, 魏炳波 2011 60 108101]
[12] Akamatsu S, Faivre G 2000 Phys. Rev. E 61 3757
[13] Cockayne E, Widom M 1998 Phys. Rev. Lett. 81 598
[14] Ingerly D B, Swenson D, Jan C H, Chang Y A 1996 J. Appl. Phys. 80 543
[15] Provenzano V, Shapiro A J, Shull R D, King T, Conavan E, Shirron P, DiPirro M 2004 J. Appl. Phys. 95 6909
[16] Mei C X, Ruan Y, Dai F P, Wei B B 2007 Acta Phys. Sin. 56 988 (in Chinese) [梅策香, 阮莹, 代富平, 魏炳波 2007 56 988]
[17] Yin H Y, Lu X Y 2008 Acta Phys. Sin. 57 4341 (in Chinese) [殷涵玉, 鲁晓宇 2008 57 4341]
[18] Raghavan V 2002 J. Phase Equilib. 23 172
[19] Zhang X H, Ruan Y, Wang W L, Wei B B 2007 Sci. China G 50 491
[20] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[21] Rogers J R, Davis R H 1990 Metall. Mater. Trans. A 21A 59
[22] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H 2000 Sci. China E 30 9 (in Chinese) [坚增运, 常芳娥, 马卫红, 严文, 杨根仓, 周尧和 2000 中国科学E辑 30 9]
[23] Chen B, Xiong H P, Mao W, Cheng Y Y 2010 J. Aero. Mater. 30 35 (in Chinese) [陈波, 熊华平, 毛唯, 程耀永 2010 航空材料学报 30 35]
[24] Liu W, Zhao H S, He J S, Zhang B G 2007 Trans. China Weld. Inst. 28 81 [刘伟, 赵海生, 何景山, 张秉刚 2007 焊接学报 28 81]
Catalog
Metrics
- Abstract views: 7826
- PDF Downloads: 589
- Cited By: 0