搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用海浪噪声自相关实现散射体无源探测

迟静 李小雷 高大治 王好忠 王宁

引用本文:
Citation:

利用海浪噪声自相关实现散射体无源探测

迟静, 李小雷, 高大治, 王好忠, 王宁

Passive detection of scatterer using autocorrelation of surf noise

Chi Jing, Li Xiao-Lei, Gao Da-Zhi, Wang Hao-Zhong, Wang Ning
PDF
导出引用
  • 提出了一种利用海浪噪声自相关实现散射体无源探测的新方法.将各接收器记录噪声信号的自相关减去所有接收器记录噪声信号自相关的平均值,得到散射信号的到达结构,然后结合基尔霍夫移位算法实现对散射体的探测.与利用背景噪声互相关提取格林函数从而实现散射体探测的方法不同,自相关无需考虑各个接收器之间的大量数据传输及时间同步问题,这为相距较远的多接收器和移动平台目标探测提供了极大的方便.将所提出的方法应用于实验数据中,最终探测结果与实际测量结果相比差别不大,验证了方法的有效性.
    When a scatterer is located in a diffuse noise field, time domain Green's function between two different receivers can be extracted from cross-correlation of ambient noise which is recorded by the two receivers so that target detection can be implemented. However, the method based on cross-correlation strongly depends on timing synchronization of each receiver, otherwise there will be a time drift in the cross-correlation result, which can bring error in the positioning detection. Besides, two receivers that are far from each other must communicate with each other to implement cross-correlation in real-time data processing, but big data transmission is difficult in the ocean. Compared with cross-correlation, autocorrelation means that each receiver works independently and only the final autocorrelation result is to be transmitted. Actually, the scattered wave of target is always so weak that it is submerged in the autocorrelation result of the ambient noise. In this paper, we propose a method of processing the autocorrelation of the ambient noise. When the averaging noise autocorrelation of all receivers is subtracted from the autocorrelation result of the noise recorded by each receiver, the signalnoise ratio of the scattered wave will be significantly enhanced. With the help of Kirchhoff migration algorithm, detection of a scatterer can be implemented. We have conducted a scatterer passive detection experiment in Shilaoren beach, Qingdao, and accurately detected the position of a polyviny chloride pipe (about 8 m away from the nearest receiver) using only 12 min surf noise data. The experimental result shows that the processing of autocorrelation could replace cross-correlation in passive target detection when the ambient noise is time steady and the statistical characteristics of the background noise at different receivers are the same. Unlike Green's function extracted from cross-correlation of ambient noise, each receiver can work independently without considering the problems of massive data transmission and timing synchronization, which may be suitable for target detection using multi-receivers and mobile platform.
      通信作者: 高大治, dzgao@ouc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674294,11374270,11374271)和青岛海洋科学与技术国家实验室基金(批准号:QNLM2016ORP0106)}资助的课题.
      Corresponding author: Gao Da-Zhi, dzgao@ouc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674294, 11374270, 11374271) and the Foundation of Qingdao National Laboratory for Marine Science and Technology, China (Grant No. QNLM2016ORP0106).
    [1]

    Buckingham M J, Broderick V, Glegg S A L 1992 Nature 356 327

    [2]

    Epifanio C L, Potter J R, Deane G B, Readhead M L, Buckingham M J 1999 J. Acoust. Soc. Am. 106 3211

    [3]

    Weaver R L, Lobkis O I 2001 J. Acoust. Soc. Am. 110 3011

    [4]

    Larose E, Derode A, Campillo M, Fink M 2004 J. Appl. Phys. 95 8393

    [5]

    Larose E, Montaldo G, Derode A, Campillo M 2006 Appl. Phys. Lett. 88 104103

    [6]

    Lani S, Satir S, Gurun G, Sabra K G, Degertekin F L 2011 Appl. Phys. Lett. 99 224103

    [7]

    Sabra K G, Gerstoft P, Roux P, Kuperman W A, Fehler M C 2005 Geophys. Res. Lett. 32 000

    [8]

    Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K 2006 The Leading Edge 25 1082

    [9]

    Roux P, Kuperman W A, the NPAL group 2004 J. Acoust. Soc. Am. 116 1995

    [10]

    Brooks L A, Gerstoft P 2009 J. Acoust. Soc. Am. 125 723

    [11]

    Snieder R, van Wijk K, Haney M 2008 Phys. Rev. E 78 036606

    [12]

    Garnier J, Papanicolaou G 2009 J. Imaging Sci. 2 396

    [13]

    Davy M, Fink M, de Rosny J 2013 Phys. Rev. Lett. 110 20

    [14]

    Li G F, Li J, Gao D Z, Wang N 2016 Acta Acustica 41 49 (in Chinese)[李国富, 黎洁, 高大治, 王宁 2016 声学学报 41 49]

    [15]

    Li J, Gerstoft P, Gao D Z, Li G F, Wang N 2017 J. Acoust. Soc. Am. 141 64

    [16]

    Larose E, Margerin L, Derode A, van Tiggelen B, van Campillo M, Shapiro N M, Paul A, Stehly L, Tanter M 2006 Geophysics 71 SI11

    [17]

    Bender C M, Orszag S A 1999 Advanced Mathematical Methods for Scientists and Engineers (New York:Springer-Verlag) pp276-280

    [18]

    Glauber R, Schomaker V 1953 Phys. Rev. 89 667

    [19]

    Sabra K G, Winkel E S, Bourgoyne D A 2007 J. Acoust. Soc. Am. 121 4

  • [1]

    Buckingham M J, Broderick V, Glegg S A L 1992 Nature 356 327

    [2]

    Epifanio C L, Potter J R, Deane G B, Readhead M L, Buckingham M J 1999 J. Acoust. Soc. Am. 106 3211

    [3]

    Weaver R L, Lobkis O I 2001 J. Acoust. Soc. Am. 110 3011

    [4]

    Larose E, Derode A, Campillo M, Fink M 2004 J. Appl. Phys. 95 8393

    [5]

    Larose E, Montaldo G, Derode A, Campillo M 2006 Appl. Phys. Lett. 88 104103

    [6]

    Lani S, Satir S, Gurun G, Sabra K G, Degertekin F L 2011 Appl. Phys. Lett. 99 224103

    [7]

    Sabra K G, Gerstoft P, Roux P, Kuperman W A, Fehler M C 2005 Geophys. Res. Lett. 32 000

    [8]

    Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K 2006 The Leading Edge 25 1082

    [9]

    Roux P, Kuperman W A, the NPAL group 2004 J. Acoust. Soc. Am. 116 1995

    [10]

    Brooks L A, Gerstoft P 2009 J. Acoust. Soc. Am. 125 723

    [11]

    Snieder R, van Wijk K, Haney M 2008 Phys. Rev. E 78 036606

    [12]

    Garnier J, Papanicolaou G 2009 J. Imaging Sci. 2 396

    [13]

    Davy M, Fink M, de Rosny J 2013 Phys. Rev. Lett. 110 20

    [14]

    Li G F, Li J, Gao D Z, Wang N 2016 Acta Acustica 41 49 (in Chinese)[李国富, 黎洁, 高大治, 王宁 2016 声学学报 41 49]

    [15]

    Li J, Gerstoft P, Gao D Z, Li G F, Wang N 2017 J. Acoust. Soc. Am. 141 64

    [16]

    Larose E, Margerin L, Derode A, van Tiggelen B, van Campillo M, Shapiro N M, Paul A, Stehly L, Tanter M 2006 Geophysics 71 SI11

    [17]

    Bender C M, Orszag S A 1999 Advanced Mathematical Methods for Scientists and Engineers (New York:Springer-Verlag) pp276-280

    [18]

    Glauber R, Schomaker V 1953 Phys. Rev. 89 667

    [19]

    Sabra K G, Winkel E S, Bourgoyne D A 2007 J. Acoust. Soc. Am. 121 4

  • [1] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥. 基于Fokker-Planck-Landau碰撞模型的非均匀尘埃等离子体目标散射特性.  , 2023, 72(6): 060201. doi: 10.7498/aps.72.20222113
    [2] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [3] 宋忠长, 张金虎, 冯文, 杨武夷, 张宇. 齿鲸生物声呐目标探测研究综述.  , 2021, 70(15): 154302. doi: 10.7498/aps.70.20210284
    [4] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法.  , 2020, (): . doi: 10.7498/aps.69.20200825
    [5] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计.  , 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [6] 徐艳, 王培光, 杨青, 董江涛. 时空相关多通道聚类的运动目标检测.  , 2019, 68(16): 164203. doi: 10.7498/aps.68.20190161
    [7] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计.  , 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [8] 金铭, 韦笑, 吴洋, 张羽淮, 余西龙. 激波风洞设施中的等离子体包覆目标电磁散射实验研究.  , 2015, 64(20): 205205. doi: 10.7498/aps.64.205205
    [9] 李威, 李骏, 龚志雄. 水下任意刚性散射体对Bessel波的散射特性分析.  , 2015, 64(15): 154305. doi: 10.7498/aps.64.154305
    [10] 夏峙, 李秀坤. 水下目标弹性声散射信号分离.  , 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [11] 张同伟, 杨坤德, 马远良, 汪勇. 一种基于单水听器宽带信号自相关函数的水下目标定位稳健方法.  , 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [12] 连天虹, 王石语, 蔡德芳, 李兵斌, 过振. 多子光束相干发射小目标探测研究.  , 2014, 63(3): 034203. doi: 10.7498/aps.63.034203
    [13] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究.  , 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [14] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究.  , 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [15] 李应乐, 黄际英, 王明军. Ku波段球体目标系的电磁复合散射研究.  , 2008, 57(12): 7630-7634. doi: 10.7498/aps.57.7630
    [16] 韦宏艳, 吴振森, 彭 辉. 斜程大气湍流中漫射目标的散射特性.  , 2008, 57(10): 6666-6672. doi: 10.7498/aps.57.6666
    [17] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析.  , 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [18] 聂在平, 王浩刚. 含腔电大尺寸导体目标电磁散射的一体化数值模拟.  , 2003, 52(12): 3035-3042. doi: 10.7498/aps.52.3035
    [19] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究.  , 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [20] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究.  , 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
计量
  • 文章访问数:  6852
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map