搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下任意刚性散射体对Bessel波的散射特性分析

李威 李骏 龚志雄

引用本文:
Citation:

水下任意刚性散射体对Bessel波的散射特性分析

李威, 李骏, 龚志雄

Study on underwater acoustic scattering of a Bessel beam by rigid objects with arbitrary shapes

Li Wei, Li Jun, Gong Zhi-Xiong
PDF
导出引用
  • 本文利用Bessel波的谐波展开式, 采用T矩阵方法的推导思路, 建立了水下任意刚性散射体在Bessel波照射下的声散射场计算公式. 以水下刚性椭球体和两端附连半球的刚性圆柱体为例, 计算了在不同波锥角β 下的反向散射形态函数, 同时, 依据镜反射波和绕行波的干涉物理模型, 给出了预报Bessel波照射下的反向散射形态函数峰峰间隔值的计算模型. 仿真结果表明本文提出的Bessel波照射下反向散射形态函数峰峰间隔值预报方法是准确有效的, 同时也说明, 本文建立的基于T矩阵法计算水下任意刚性散射体在Bessel波束下的声散射场方法是有效的, 这拓展了T矩阵法的应用领域.
    Study on underwater acoustic scattering is very important for detection, location, and recognition of underwater targets. In the past decades, most investigations in this respect were focused on the case of plane wave incidence. But the Bessel beam is a kind of approximate non-diffracting beam with an excellent directing property, so more attention should be paid on it. So far, according to the literature, the studies about underwater acoustic scattering of a Bessel beam mainly focused on spheres and spherical shells using the partial wave series form. When the scatterers become complex objects, the partial wave series form fails to deal with these kinds of problems. To overcome this shortage, the T-matrix method has been introduced to calculate the underwater scattering of a Bessel beam by complex rigid objects. #br#In this paper, the underwater acoustic scattering of a Bessel beam by rigid objects with arbitrary shapes calculated by T-matrix method is studied. By means of the harmonic expansion of Bessel beam, the expression of the incident coefficient can be derived. Through the transmission matrix that relates the known coefficients of expansion of an incident wave to the unknown expansion coefficients of the scattered field, the acoustic scattering formula of a Bessel beam by a rigid scatterer with arbitrary shape is established. In this paper, the backscattering fields of rigid spheroids and finite cylinders with two spheroidal endcaps are discussed, and the backscattering form function modulus |F| is curved as a function of dimensionless frequency ka. Subsequently, the peak to peak intervals in backscattering form function caused by the interference of the specular wave and the Franz wave are also analyzed in geometry. The calculated results show that the frequency interval obtained from the curves agrees well with those obtained by geometric analysis for the rigid objects. Meanwhile, for both the rigid spheroid and finite cylinder, the highlight model is successfully applied to explain the phenomenon in which the amplitude of backscattering form function changes with the cone angle of the Bessel beam. From the above numerical results and analysis, the T-matrix method has been successfully introduced to calculate the acoustic scattering of the Bessel beam by complex objects, which extends the application of the T-matrix method and provides a useful tool to explore the characteristics of the Bessel beam.
    • 基金项目: 国家自然科学基金(批准号: 40706019)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 40706019).
    [1]

    Williams K L, Marston P L 1985 J. Acoust. Soc. Am. 78 1093

    [2]

    Houston B H, Bucaro J A, Photiadis D M 1995 J. Acoust. Soc. Am. 98 2851

    [3]

    Gabrielli P, Mercier-Finidori M 2001 J. Sound Vib. 241 423

    [4]

    Li W 2004 Ph.D. Dissertation (Singapore: National University of Singapore)

    [5]

    Durnin J 1984 J. Opt. Soc. Am. A 4 651

    [6]

    Marston P L 2007 J. Acoust. Soc. Am. 121 753

    [7]

    Marston P L 2007 J. Acoust. Soc. Am. 122 247

    [8]

    Li W, Qu H F 2013 Acta Acustica 38 42

    [9]

    Waterman P C 1969 J. Acoust. Soc. Am. 54 1417

    [10]

    Li W, Zhao Y, Zhang T, Liu J X 2007 Technical Acoustics 26 844 (in Chinese) [李威, 赵耀, 张涛, 刘敬喜 2007 声学技术 26 844]

    [11]

    Fan J, Zhu B, Tang W 2001 Acta Acustica 26 545 (in Chinese) [范军, 朱蓓丽, 汤渭霖 2001 声学学报 26 545]

    [12]

    Fan J, Liu T, Tang W 2002 Technical Acoustics 21 153 (in Chinese) [范军, 刘涛, 汤渭霖 2002 声学技术 21 153]

    [13]

    Marston P L 2008 J. Acoust. Soc. Am. 124 2905

  • [1]

    Williams K L, Marston P L 1985 J. Acoust. Soc. Am. 78 1093

    [2]

    Houston B H, Bucaro J A, Photiadis D M 1995 J. Acoust. Soc. Am. 98 2851

    [3]

    Gabrielli P, Mercier-Finidori M 2001 J. Sound Vib. 241 423

    [4]

    Li W 2004 Ph.D. Dissertation (Singapore: National University of Singapore)

    [5]

    Durnin J 1984 J. Opt. Soc. Am. A 4 651

    [6]

    Marston P L 2007 J. Acoust. Soc. Am. 121 753

    [7]

    Marston P L 2007 J. Acoust. Soc. Am. 122 247

    [8]

    Li W, Qu H F 2013 Acta Acustica 38 42

    [9]

    Waterman P C 1969 J. Acoust. Soc. Am. 54 1417

    [10]

    Li W, Zhao Y, Zhang T, Liu J X 2007 Technical Acoustics 26 844 (in Chinese) [李威, 赵耀, 张涛, 刘敬喜 2007 声学技术 26 844]

    [11]

    Fan J, Zhu B, Tang W 2001 Acta Acustica 26 545 (in Chinese) [范军, 朱蓓丽, 汤渭霖 2001 声学学报 26 545]

    [12]

    Fan J, Liu T, Tang W 2002 Technical Acoustics 21 153 (in Chinese) [范军, 刘涛, 汤渭霖 2002 声学技术 21 153]

    [13]

    Marston P L 2008 J. Acoust. Soc. Am. 124 2905

  • [1] 樊久扬, 张玉贤, 冯晓丽, 黄志祥. 用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法.  , 2024, 73(24): . doi: 10.7498/aps.73.20241346
    [2] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器.  , 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [3] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用.  , 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [4] 陈海军, 张耀文. 空间调制作用下Bessel型光晶格中物质波孤立子的稳定性.  , 2014, 63(22): 220303. doi: 10.7498/aps.63.220303
    [5] 许永红, 韩祥临, 石兰芳, 莫嘉琪. 薛定谔扰动耦合系统孤波的行波近似解法.  , 2014, 63(9): 090204. doi: 10.7498/aps.63.090204
    [6] 米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华. 光散射聚集速率测定中T矩阵方法的应用.  , 2013, 62(13): 134704. doi: 10.7498/aps.62.134704
    [7] 李粮生, 闫华, 侯兆国, 殷红成. 部分Bessel形电磁波.  , 2013, 62(3): 030301. doi: 10.7498/aps.62.030301
    [8] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩. 光纤光栅法布里-珀罗腔的V-I传输矩阵法研究.  , 2010, 59(12): 8615-8624. doi: 10.7498/aps.59.8615
    [9] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算.  , 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [10] 杜宏伟, 彭 虎, 江朝晖, 冯焕清. 基于Fourier-Bessel级数的Bessel型超声场二次谐波近场特性研究.  , 2007, 56(11): 6496-6502. doi: 10.7498/aps.56.6496
    [11] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构.  , 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [12] 王洪梅, 张亚非. Airy传递矩阵法与偏压下多势垒结构的准束缚能级.  , 2005, 54(5): 2226-2232. doi: 10.7498/aps.54.2226
    [13] 王 熠, 翟宏琛, 母国光. 基于形态矩阵的图像模糊匹配方法.  , 2005, 54(5): 1965-1968. doi: 10.7498/aps.54.1965
    [14] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构.  , 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [15] 郑宏兴, 葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射.  , 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [16] 唐世敏. 若干非线性波方程的行波解.  , 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818
    [17] 肖奕. 孤子方程求解的投影矩阵法.  , 1989, 38(12): 1911-1918. doi: 10.7498/aps.38.1911
    [18] 谭维翰, 张卫平. 共振荧光场的态函数与多光子跃迁共振荧光谱.  , 1988, 37(4): 674-679. doi: 10.7498/aps.37.674
    [19] 孙凤久. 光学形式量子化算符法与矩阵法的对应关系.  , 1985, 34(3): 368-376. doi: 10.7498/aps.34.368
    [20] 郑兆勃. 无限次微扰理论的分块矩阵法证明.  , 1981, 30(7): 866-877. doi: 10.7498/aps.30.866
计量
  • 文章访问数:  6004
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-05
  • 修回日期:  2015-02-28
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map