搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型非常规超导体UTe2的单晶生长方法研究进展

薛子威 袁登鹏 谭世勇

引用本文:
Citation:

新型非常规超导体UTe2的单晶生长方法研究进展

薛子威, 袁登鹏, 谭世勇

Advances in Single Crystal Growth Methods for the Novel Unconventional Superconductor UTe2

Xue Ziwei, Yuan Dengpeng, Tan Shiyong
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 作为近年来新发现的非常规超导体,重费米子化合物二碲化铀( UTe2)因被认为存在自旋三重态超导配对、高场再入超导相和新奇量子临界特征而受到广泛关注.然而,不同的样品质量导致该体系的实验研究结果呈现出明显的差异甚至矛盾。关于是否多组分超导序参量、是否时间反演对称性破缺和多个场致超导相是否相同起源等关键问题,学界争议激烈,严重阻碍了对该体系本征超导配对机制的深度认识和理解.本文总结了UTe2的单晶生长方法研究进展,包括化学气相输运法、熔盐助熔剂法、碲助熔剂法和熔盐助熔剂液体输运法,并梳理了生长条件对样品超导性和结晶质量的影响,最后进行了总结和展望.
    As a recently discovered unconventional superconductor, the heavy fermion compound UTe2 has garnered significant attention due to its potential spin-triplet superconducting pairing, high-field re-entrant superconducting phases, and unique quantum critical characteristics. However, experimental results on this system exhibit significant variations and contradictions, primarily due to differences in sample quality. Key unresolved issues include whether the system exhibits multi-component superconducting order parameters, whether time-reversal symmetry is spontaneously broken, and whether multiple field-induced superconducting phases share a common origin. These controversies have hindered an in-depth understanding of the intrinsic superconducting pairing mechanism in the UTe2 system.
    This paper reviews recent advances in single-crystal growth methods for UTe2, including chemical vapor transport (CVT), Te-flux, molten salt flux (MSF), and molten salt flux liquid transport (MSFLT). We systematically analyze how growth conditions influence superconductivity and crystal quality. Although the CVT method was initially employed in UTe2 studies, the samples grown by this method exhibit poor quality and significant compositional inhomogeneity, even within individual samples. Consequently, the CVT method has been progressively supplanted by the recently developed MSF method. In contrast, the MSF and MSFLT methods yield high-quality UTe2 single crystals with Tc as high as 2.1 K and RRR reaching up to 1000; however, the sample sizes are smaller compared to those grown by the CVT and Te-flux methods. Notably, MSF-grown samples occasionally contain magnetic impurities such as U7Te12, necessitating careful screening during sample collection. MSFLT combines the advantages of both CVT and MSF methods, enabling the growth of high-quality UTe2 single crystals while also producing larger sample sizes than MSF. Our findings highlight the importance of optimizing growth parameters such as the Te/U ratio, temperature gradients, and cooling rates. For instance, lower growth temperatures and precise control of the Te/U ratio significantly enhance Tc and sample quality. High-quality MSF and MSFLT samples have resolved several controversies, including clarifying the single-component nature of the superconducting order parameter and confirming the absence of time-reversal symmetry breaking in optimized samples.
    In conclusion, this review underscores the pivotal role of advanced single-crystal growth techniques in advancing the study of UTe2. Future research should focus on utilizing these high-quality UTe2 samples grown by MSF and MSFLT methods to accurately determine superconducting order parameters, elucidate mechanisms behind high-field re-entrant superconducting phases, and explore topological properties, such as potential Majorana fermions. These efforts will deepen our understanding of unconventional superconductivity, spin fluctuations, and quantum critical phenomena in UTe2 system.
  • [1]

    Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J 2019 Science 365684

    [2]

    Nakamine G, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2019 J. Phys. Soc. Jpn. 8843702

    [3]

    Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2021 Phys. Rev. B 103 L100503

    [4]

    Fujibayashi H, Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2022 J. Phys. Soc. Jpn. 91043705

    [5]

    Ran S, Jiao L 2021 Sci. Sin. Phys. Mech. Astron. 5193(in Chinese) [冉升, 焦琳2021中国科学(物理学力学天文学) 5193

    [6]

    Ran S, Liu I, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 151250

    [7]

    Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88063707

    [8]

    Ikeda S, Sakai H, Aoki D, Homma Y, Yamamoto E, Nakamura A, Shiokawa Y, Haga Y, Onuki Y 2006 J. Phys. Soc. Jpn. 75116

    [9]

    Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2147

    [10]

    Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J, Flouquet J 2020 J. Phys. Soc. Jpn. 89053705

    [11]

    Ran S, Kim H, Liu I, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 Phys. Rev. B 101140503

    [12]

    Lin W, Campbell D J, Ran S, Liu I, Kim H, Nevidomskyy A H, Graf D, Butch N P, Paglione J 2020 npj Quantum Mater. 568

    [13]

    Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2021 Science 373797

    [14]

    Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709

    [15]

    Aoki D, Brison J, Flouquet J, Ishida K, Knebel G, Tokunaga Y, Yanase Y 2022 J. Phys.-Condes. Matter 34243002

    [16]

    Thomas S M, Stevens C, Santos F B, Fender S S, Bauer E D, Ronning F, Thompson J D, Huxley A, Rosa P F S 2021 Phys. Rev. B 104224501

    [17]

    Rosa P F S, Weiland A, Fender S S, Scott B L, Ronning F, Thompson J D, Bauer E D, Thomas S M 2022 Commun. Mater. 333

    [18]

    Aoki D, Sakai H, Opletal P, Tokiwa Y, Ishizuka J, Yanase Y, Harima H, Nakamura A, Li D, Homma Y, Shimizu Y, Knebel G, Flouquet J, Haga Y 2022 J. Phys. Soc. Jpn. 91083704

    [19]

    Eaton A G, Weinberger T I, Popiel N J M, Wu Z, Hickey A J, Cabala A, Pospisil J, Prokleska J, Haidamak T, Bastien G, Opletal P, Sakai H, Haga Y, Nowell R, Benjamin S M, Sechovsky V, Lonzarich G G, Grosche F M, Valiska M 2024 Nat. Commun. 15223

    [20]

    Ajeesh M O, Bordelon M, Girod C, Mishra S, Ronning F, Bauer E D, Maiorov B, Thompson J D, Rosa P F S, Thomas S M 2023 Phys. Rev. X 13041019

    [21]

    Xu Y, Sheng Y, Yang Y 2019 Phys. Rev. Lett. 123217002

    [22]

    Stöwe K 1996 J. Solid. State. Chem. 127202

    [23]

    Ran S, Liu I L, Saha S R, Saraf P, Paglione J, Butch N P 2021 J. Vis. Exp. 173 e62563

    [24]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vališka M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88043702

    [25]

    Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579523

    [26]

    Fujimori S, Kawasaki D, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88103701

    [27]

    Miao L, Liu S, Xu Y, Kotta E C, Kang C, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. Rev. Lett. 124076401

    [28]

    Cairns L P, Stevens C R, O'Neill C D, Huxley A 2020 J. Phys.-Condes. Matter. 32415602

    [29]

    Haga Y, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Sakai H 2022 J. Phys.-Condes. Matter. 34175601

    [30]

    Yang C, Guo J, Cai S, Zhou Y, Sidorov V A, Huang C, Long S, Shi Y, Chen Q, Tan S, Wu Q, Coleman P, Xiang T, Sun L 2022 Phys. Rev. B 10624503

    [31]

    Frank C E, Lewin S K, Salas G S, Czajka P, Hayes I M, Yoon H, Metz T, Paglione J, Singleton J, Butch N P 2024 Nat. Commun. 153378

    [32]

    Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vali Ka M, Harima H, Flouquet J 2020 Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019) Okayama, Japan, September 23-28, 2019011065

    [33]

    Mineev V P 2022 J. Phys. Soc. Jpn. 91074601

    [34]

    Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, Sonier J E 2023 Commun. Phys. 624

    [35]

    Theuss F, Shragai A, Grissonnanche G, Hayes I M, Saha S R, Eo Y S, Suarez A, Shishidou T, Butch N P, Paglione J, Ramshaw B J 2024 Nat. Phys. 201124

    [36]

    Yao S, Li T, Yue C, Xu X, Zhang B, Zhang C 2022 Cryst. Eng. Comm. 246262

    [37]

    Xie D H, Lai X C, Tan S Y, Zhang W, Liu Y, Feng W, Zhang Y, Liu Q, Zhu X G, Yuan B K, Fang Y 2016 Rare Metal Mater. Eng. 452128(in Chinese) [谢东华, 赖新春, 谭世勇, 张文, 刘毅, 冯卫, 张云, 刘琴, 朱燮刚, 袁秉凯, 方运2016稀有金属材料与工程452128]

    [38]

    Ji X, Liu Q, Feng W, Zhang Y, Chen Q, Liu Y, Hao Q, Wu J, Xue Z, Zhu X, Zhang Q, Luo X, Tan S, Lai X 2024 Phys. Rev. B 109075158

    [39]

    Sakai H, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Haga Y 2022 Phys. Rev. Mater. 6073401

    [40]

    Bdey S, Savvin S N, Bourguiba N F, Núñez P 2022 J. Solid State Chem. 305122644

    [41]

    Kwon M J, Binh N V, Cho S, Shim S B, Ryu S H, Jung Y J, Nam W H, Cho J Y, Park J H 2024 Electron. Mater. Lett. 20559

    [42]

    Chen H, Singh S, Mei H, Ren G, Zhao B, Surendran M, Wang Y, Mishra R, Kats M A, Ravichandran J 2024 J. Mater. Res. 391901

    [43]

    Matsumura H, Fujibayashi H, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2023 J. Phys. Soc. Jpn. 92063701

    [44]

    Ishihara K, Roppongi M, Kobayashi M, Imamura K, Mizukami Y, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Nat. Commun. 142966

    [45]

    Azari N, Yakovlev M, Rye N, Dunsiger S R, Sundar S, Bordelon M M, Thomas S M, Thompson J D, Rosa P F S, Sonier J E 2023 Phys. Rev. Lett. 131226504

    [46]

    Ishihara K, Kobayashi M, Imamura K, Konczykowski M, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Phys. Rev. Res. 5 L022002

    [47]

    Vališka M, Haidamak T, Cabala A, Pospíšil J, Bastien G, Sechovský V, Prokleška J, Yanagisawa T, Opletal P, Sakai H, Haga Y, Miyata A, Gorbunov D, Zherlitsyn S 2024 Phys. Rev. Mater. 8094415

    [48]

    Broyles C, Rehfuss Z, Siddiquee H, Zhu J A, Zheng K, Nikolo M, Graf D, Singleton J, Ran S 2023 Phys. Rev. Lett. 131036501

    [49]

    Aoki D, Sheikin I, McCollam A, Ishizuka J, Yanase Y, Lapertot G, Flouquet J, Knebel G 2023 J. Phys. Soc. Jpn. 92065002

    [50]

    Weinberger T I, Wu Z, Graf D E, Skourski Y, Cabala A, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Phys. Rev. Lett. 132266503

    [51]

    Serrano K, Taxil P 1999 J. Appl. Electrochem. 29497

    [52]

    Opletal P, Sakai H, Haga Y, Tokiwa Y, Yamamoto E, Kambe S, Tokunaga Y 2023 J. Phys. Soc. Jpn. 92034704

    [53]

    Wu Z, Weinberger T I, Chen J, Cabala A, Chichinadze D V, Shaffer D, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Hickey A J, Mancera-Ugarte M J, Benjamin S, Graf D E, Skourski Y, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Proc. Natl. Acad. Sci. U. S. A. 121 e2403067121

    [54]

    Aoki D 2024 J. Phys. Soc. Jpn. 93043703

    [55]

    Tokiwa Y, Sakai H, Kambe S, Opletal P, Yamamoto E, Kimata M, Awaji S, Sasaki T, Yanase Y, Haga Y, Tokunaga Y 2023 Phys. Rev. B 108144502

  • [1] 杨金颖, 王彬彬, 刘恩克. 磁性拓扑材料中贝利曲率驱动的非常规电输运行为.  , doi: 10.7498/aps.72.20230995
    [2] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , doi: 10.7498/aps.71.20220388
    [3] 邱航强, 谢晓萌, 刘艺, 李玉科, 许晓峰, 焦文鹤. 三元钯基碲化物的单晶生长和电输运性质.  , doi: 10.7498/aps.71.20221034
    [4] 李建新. 自旋涨落与非常规超导配对.  , doi: 10.7498/aps.70.20202180
    [5] 胡江平. 探索非常规高温超导体.  , doi: 10.7498/aps.70.20202122
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展.  , doi: 10.7498/aps.67.20181818
    [7] 程金光. 高压调控的磁性量子临界点和非常规超导电性.  , doi: 10.7498/aps.66.037401
    [8] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究.  , doi: 10.7498/aps.64.097401
    [9] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理.  , doi: 10.7498/aps.63.118103
    [10] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , doi: 10.7498/aps.56.6705
    [11] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长.  , doi: 10.7498/aps.56.6531
    [12] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , doi: 10.7498/aps.53.4410
    [13] 张永健, 陈仙辉, 陈兆甲, 曹烈兆, 戚伯云. Bi-1212相和Bi-1222相铜氧化合物的合成和超导电性.  , doi: 10.7498/aps.44.922
    [14] 杨碚芳, M. J. G. LEE, J. M. PERZ, 许存义, 左健, 汪良斌, 阮耀钟, 张裕恒. 掺Ba对Bi系2212相超导电性的影响.  , doi: 10.7498/aps.43.308
    [15] 陈仙辉, 陈祖耀, 钱逸泰, 顾震天, 程香爱, 沙健, 王克勤, 张其瑞. (Bi,Pb)-Sr-Ca-Cu-O体系110K超导体的相转变及超导电性.  , doi: 10.7498/aps.40.297
    [16] 夏健生, 曹烈兆, 徐成, 王顺喜, 陈健, 陈祖耀, 张其瑞. (Bi,Pb)4Ca3Sr3Cu4Oy系统的超导电性与相结构的关联.  , doi: 10.7498/aps.38.1026
    [17] 梁敬魁, 张玉苓, 黄久齐, 解思琛, 车广灿, 成向荣, 倪永明, 郑东宁, 贾顺莲. 新系列超导相TlBaCan-1CunO2n+2.5(n=2,3)的晶体结构和超导电性.  , doi: 10.7498/aps.38.264
    [18] 曹效文;赵典锋;张裕恒. 非晶态InSb及其亚稳中间相的霍耳效应和超导电性.  , doi: 10.7498/aps.36.1041
    [19] 王炜, 余正, 孙元善, 姚希贤. 二维颗粒膜超导电性.  , doi: 10.7498/aps.35.1081
    [20] 朱宰万, 姜文植. 金属氢高温超导电性.  , doi: 10.7498/aps.30.271
计量
  • 文章访问数:  25
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map