Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precise control of LaTiO3(110) film growth by molecular beam epitaxy and surface termination of the polar film

Li Wen-Tao Liang Yan Wang Wei-Hua Yang Fang Guo Jian-Dong

Citation:

Precise control of LaTiO3(110) film growth by molecular beam epitaxy and surface termination of the polar film

Li Wen-Tao, Liang Yan, Wang Wei-Hua, Yang Fang, Guo Jian-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Transition metal oxides exhibit abundant physical properties due to the electronic interactions between charge, orbit and spin degrees of freedom. Lanthanum titanate, LaTiO3, a typical strongly correlated electron material, shows Mott-type metal-insulator and antiferromagnetic transitions at low temperature. And these interesting behaviors can be tuned by adjusting the occupation of the t2g orbit of Ti3+, or introducing symmetry breaking or lattice strain into the heterointerfaces. Especially on LaTiO3(110) surface, the anisotropic structure as well as the surface polarity allows the flexible control of artificial low-dimensional structure. However, the instability induced by surface polarity hinders the growth of high-quality LaTiO3(110) film. Here we show that by keeping the growing surface reconstructed in the molecular beam epitaxy (MBE) process, the surface polarity can be effectively compensated for, allowing the high-quality layer-by-layer film growth. Moreover, the intensity of reflective high-energy electron diffraction (RHEED) pattern sensitively changes with the surface cation concentration. Therefore the relative deposition rates of La and Ti sources can be monitored and further be precisely calibrated in situ and in real-time. We first prepare the (2× 16) reconstruction on SrTiO3(110) surface by depositing La and Ti (2 ML for each) metals. Further increasing the Ti concentration on (2×16), i. e., the [Ti]/[La] ratio, results in the significant decrease of RHEED “1×” intensity and the increase of “2×” intensity. And the change of RHEED intensity is quantitatively reversible through reducing the [Ti]/[La] ratio by the same amount. We set the evaporation rate of Ti source to be slightly higher than that of La for the MBE film growth. And the shutter state of Ti source is controlled to be open or close, which is determined by the change of RHEED intensity. Precise cation stoichiometry is achieved in the LaTiO3(110) film. X-ray diffraction confirms the single crystallinity of the film while scanning tunneling microscope images indicate the atomically flat surface with (2×16) reconstruction that is responsible for the stabilization of the polar surface. The annealing of the sample in oxygen at 700 ℃ will oxidize the LaTiO3 film into the thermodynamically stable phase, i. e. , La2Ti2O7, although the as-grown LaTiO3 phase can be stable at room temperature. The high-resolution STM images reveal the detailed structural information of the (2×16) film surface–along the [001] direction, the tilt of TiO6 octahedron in LaTiO3 lattice results in the “2×” periodicity modulation on the (110) surface. The “×16” periodicity along [110] might be related to the rotation of TiO6 octahedron in (001) plane or to the strain relief on the surface. Both of the RHEED and STM observations indicate that the film surface is terminated by the TiO6 octahedron, i. e., the (O2) atom layer. Indeed the LaTiO3(110) polar surface can be stabilized by making two holes on the (O2) layer by oxidizing Ti3+ into Ti4+. On the contrary, due to the Coulomb repulsion between electrons on Ti3+ 3d orbit, the (110) surface is difficult to reduce (to introduce extra electrons). Therefore the (LaTiO) termination layer cannot be stable.
    • Funds: Project supported by the National Basic Research Project of China (Grant No. 2012CB921700), National Natural Science Foundation of China (Grant Nos. 11225422 & 11474334) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB07010100).
    [1]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [2]

    Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y 1995 Phys. Rev. B 51 9581

    [3]

    Meijer G I, Henggeler W, Brown J, Becker O S, Bednorz J G, Rossel C, Wachter P 1999 Phys. Rev. B 59 11832

    [4]

    Hays C C, Zhou J S, Markert J T, Goodenough J B 1999 Phys. Rev. B 60 10367

    [5]

    Kim K H, Norton D P, Budai J D, Chisholm M F, Sales B C, Christern D K, Cantoni C 2003 Phys. Stat. Sol. 200 346

    [6]

    Lichtenberg F, Widmer D, Bednorz J G, Williams T, Reller A 1991 Z. Phys. B Condensed Matter. 82 211

    [7]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378

    [8]

    Schlom D G, Chen L Q, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429

    [9]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nature Mater. 11 103

    [10]

    Huang X, Dong S 2014 Mod. Phys. Lett. B 281 43010

    [11]

    Chen Y Z, Sun J R, Shen B G, Linderoth S 2013 Chin. Phys. B 22 116803

    [12]

    Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B, Schmid M, Sanchez -B J, Varyhalov A, Franchini C, Held K, Diebold U 2014 PNAS 111 3933

    [13]

    Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquer J, Varela M, Scigaj M, Dix N, Sanchez F, Fontcuberta, J 2015 Nature Comm. 6 6028

    [14]

    Feng J, Zhu X, Guo J 2013 Surf. Sci. 614 38

    [15]

    Wang Z, Yang F, Zhang Z, Tang Y, Feng J, Wu K, Guo Q, Guo J 2011 Phys. Rev. B 83 155453

    [16]

    Feng J, Yang F, Wang Z, Yang Y, Gu L, Zhang J, Guo J 2012 AIP Advances 2 041407

    [17]

    Marshall M S J, Castell M R 2014 Chem. Soc. Rev. 43 2226

    [18]

    Li W, Liu S, Wang S, Guo Q, Guo J 2014 J. Phys. Chem. C 118 2469

    [19]

    Hemberger J, Nidda H -A K, Fritsch V, Deisenhofer J, Lobina S, Rudolf T, Lunkenheimer P, Lichtenberg F, Loidl A, Bruns D, Buchner B 2003 Phys. Rev. Lett. 91 066403

    [20]

    Glazer A M 1975 Acta Cryst. A 31 756

    [21]

    Havelia S, Balasubramaniam K R, Spurgeon S, Cormack F, Salvador P A 2008 J. Cryst. Growth 310 1985

    [22]

    Wang Z, Wu K, Guo Q, Guo J 2009 Appl. Phys. Lett. 95 021912

    [23]

    Russell B C, Castell M R 2008 Phys. Rev. B 77 245414

    [24]

    Enterkin J A, Subramanian A K, Russell B C, Castell M R, Poeppelmeier K R, Marks L D 2010 Nat. Mater. 9 245

    [25]

    Cao Y, Wang S, Liu S, Guo Q, Guo J 2012 J. Chem. Phys. 137 044701

  • [1]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [2]

    Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y 1995 Phys. Rev. B 51 9581

    [3]

    Meijer G I, Henggeler W, Brown J, Becker O S, Bednorz J G, Rossel C, Wachter P 1999 Phys. Rev. B 59 11832

    [4]

    Hays C C, Zhou J S, Markert J T, Goodenough J B 1999 Phys. Rev. B 60 10367

    [5]

    Kim K H, Norton D P, Budai J D, Chisholm M F, Sales B C, Christern D K, Cantoni C 2003 Phys. Stat. Sol. 200 346

    [6]

    Lichtenberg F, Widmer D, Bednorz J G, Williams T, Reller A 1991 Z. Phys. B Condensed Matter. 82 211

    [7]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378

    [8]

    Schlom D G, Chen L Q, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429

    [9]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nature Mater. 11 103

    [10]

    Huang X, Dong S 2014 Mod. Phys. Lett. B 281 43010

    [11]

    Chen Y Z, Sun J R, Shen B G, Linderoth S 2013 Chin. Phys. B 22 116803

    [12]

    Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B, Schmid M, Sanchez -B J, Varyhalov A, Franchini C, Held K, Diebold U 2014 PNAS 111 3933

    [13]

    Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquer J, Varela M, Scigaj M, Dix N, Sanchez F, Fontcuberta, J 2015 Nature Comm. 6 6028

    [14]

    Feng J, Zhu X, Guo J 2013 Surf. Sci. 614 38

    [15]

    Wang Z, Yang F, Zhang Z, Tang Y, Feng J, Wu K, Guo Q, Guo J 2011 Phys. Rev. B 83 155453

    [16]

    Feng J, Yang F, Wang Z, Yang Y, Gu L, Zhang J, Guo J 2012 AIP Advances 2 041407

    [17]

    Marshall M S J, Castell M R 2014 Chem. Soc. Rev. 43 2226

    [18]

    Li W, Liu S, Wang S, Guo Q, Guo J 2014 J. Phys. Chem. C 118 2469

    [19]

    Hemberger J, Nidda H -A K, Fritsch V, Deisenhofer J, Lobina S, Rudolf T, Lunkenheimer P, Lichtenberg F, Loidl A, Bruns D, Buchner B 2003 Phys. Rev. Lett. 91 066403

    [20]

    Glazer A M 1975 Acta Cryst. A 31 756

    [21]

    Havelia S, Balasubramaniam K R, Spurgeon S, Cormack F, Salvador P A 2008 J. Cryst. Growth 310 1985

    [22]

    Wang Z, Wu K, Guo Q, Guo J 2009 Appl. Phys. Lett. 95 021912

    [23]

    Russell B C, Castell M R 2008 Phys. Rev. B 77 245414

    [24]

    Enterkin J A, Subramanian A K, Russell B C, Castell M R, Poeppelmeier K R, Marks L D 2010 Nat. Mater. 9 245

    [25]

    Cao Y, Wang S, Liu S, Guo Q, Guo J 2012 J. Chem. Phys. 137 044701

  • [1] Song Tian-Shu, Xia Hui. Study on dynamic scaling behavior of Villain-Lai-Das Sarma equation based on numerically stable nueral networks. Acta Physica Sinica, 2024, 73(16): 160501. doi: 10.7498/aps.73.20240852
    [2] Pei Ming-Hui, Tian Yu, Zhang Jin-Xing. Control of surface structures and functionalities in perovskite-type ferroelectric oxides and their potential applications. Acta Physica Sinica, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [3] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng. Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001). Acta Physica Sinica, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [5] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [6] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [7] Ding Zhao, Wei Jun, Yang Zai-Rong, Luo Zi-Jiang, He Ye-Quan, Zhou Xun, He Hao, Deng Chao-Yong. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring. Acta Physica Sinica, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [8] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [9] Zhao Ming-Hai, Sun Jing-Jing, Wang Dan, Zou Zhi-Qiang, Liang Qi. STM studies of the epitaxial growth of C60 molecules on Si(111)-7×7 surface. Acta Physica Sinica, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [10] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [11] Zhang Ying-Tang, He Meng, Chen Zi-Yu, Lü Hui-Bin. Epitaxial growth of La0.67Sr0.33MnO3 on glass by laser molecular beam epitaxy. Acta Physica Sinica, 2009, 58(3): 2002-2004. doi: 10.7498/aps.58.2002
    [12] He Meng, Liu Guo-Zhen, Qiu Jie, Xing Jie, Lü Hui-Bin. Epitaxial growth of high quality TiN thin film on Si by laser molecular beam epitaxy. Acta Physica Sinica, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [13] Yan Feng-Ping, Zheng Kai, Wang Lin, Li Yi-Fan, Gong Tao-Rong, Jian Shui-Sheng, K. Ogata, K. Koike, S. Sasa, M. Inoue, M. Yano. Measurement of thickness and refractive index of Zn1-xMgxO film grown on sapphire substrate by molecular beam epitaxy. Acta Physica Sinica, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [14] . Acta Physica Sinica, 2002, 51(2): 372-376. doi: 10.7498/aps.51.372
    [15] LIU HONG-FEI, CHEN HONG, LI ZHI-QIANG, WAN LI, HUANG QI, ZHOU JUN-MING, LUO YI, HAN YING-JUN. EPITAXIALL GROWTH OF CUBIC AND HEXAGONAL GaN FILMS ON GaAs(001) SUBSTRATES BY MBE. Acta Physica Sinica, 2000, 49(6): 1132-1135. doi: 10.7498/aps.49.1132
    [16] CUI DA-FU, CHEN FAN, ZHAO TONG, SHI WEN-SHENG, CHEN ZHENG-HAO, ZHOU YUE-LIANG, LV HUI-BIN, YANG GUO-ZHEN, HUANG HUI-ZHONG, ZHANG HONG-XIA. TOPMOST SURFACE AND GROWTH MECHANISM OF BaTiO3 THIN FILM GROWN BY LAS ER MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 2000, 49(9): 1878-1882. doi: 10.7498/aps.49.1878
    [17] WANG SHAO-QING, LIU QUAN-PU, YE HENG-QIANG. AN INCIPIENT EDGE DISLOCATION IN EPITAXIAL WURTZITE GaN. Acta Physica Sinica, 1998, 47(11): 1858-1861. doi: 10.7498/aps.47.1858
    [18] YI XIN-JIAN, LI YI, HAO JIAN-HUA, ZHANG XIN-YU, G.K.WONG. THIN FILMS OF Sb GROWN BY MOLECULAR BEAM EPITAXY AND THE QUANTUM SIZE EFFECT. Acta Physica Sinica, 1998, 47(11): 1896-1899. doi: 10.7498/aps.47.1896
    [19] PAN SHI-HONG, WANG ZHONG-HE, HUANG SHUO, ZHANG CUN-ZHOU, ZHOU XIAO-CHUAN, XU GUI-CHANG, JIANG JIAN, CHEN ZHONG-GUI. PHOTOREFLECTANCE SPECTRA FROM SURFACES AND GaAs-GaAs INTERFACES OF DOPED MBE GaAs FILMS. Acta Physica Sinica, 1993, 42(11): 1879-1886. doi: 10.7498/aps.42.1879
    [20] ZHOU GUO-LIANG, CHEN KE-MING, TIAN LIANG-GUANG. LOW TEMPERATURE GROWTH OF THIN Ge FILM ON Si SUBSTRATES BY MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1988, 37(10): 1607-1612. doi: 10.7498/aps.37.1607
Metrics
  • Abstract views:  7638
  • PDF Downloads:  484
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2015
  • Accepted Date:  25 March 2015
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map