-
In recent years, the motion of nanodroplets on energy gradient surface on a microscale has attracted widespread attention, however, experimental studies are still irrealizable. In this work, the motions of nanodroplets driven by the energy gradient on surfaces with different microstructures are studied by molecular dynamics method. The results show that: the groove-shaped and post-shaped microstructures can remarkably enhance the motion efficiency of the nanodroplets, while the nail-shaped microstructures decrease the motion efficiency, despite they can achieve a stable hydrophobicity. The hybrid microstructures composed of groove-shaped and nail-shaped textures inherit both the advantages of the two microstructure, which not only enhances the motion efficiency of nanodroplets, but also increases the hydrophobic stability. Furthermore, small change in surface energy can significantly affect the velocity of nanodroplet.
-
Keywords:
- molecular dynamics simulation /
- surface energy gradient /
- surface microstructure /
- nanodrops
[1] Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117
[2] Young N O, Goldstein J S, Block M J 1959 J. Fluid Mech. 6 350
[3] Brochard F 1989 Langmuir 5 432
[4] Barton K D, Subramanian R S 1989 J. Colloid. Interf. Sci. 133 211
[5] Ge S, Chen M 2013 Acta Phys. Sin. 62 110204 (in Chinese) [葛宋, 陈民 2013 62 110204]
[6] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L 2010 Nature 463 640
[7] Sommers A D, Brest T J, Eid K F 2013 Langmuir 29 12043
[8] Chaudhury M K, Whitesides G W 1992 Science 256 1539
[9] Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633
[10] Hitoshi S, Satoshi Y 2003 Langmuir 19 529
[11] Kou J L, Mei M F, Lu H J, Wu F M, Fan J T 2012 Phys. Rev. E 85 056301
[12] Whitby M, Quirke N 2007 Nat. Nanotechnol. 2 87
[13] Berezhkovskii A, Hummer G 2002 Phys. Rev. Lett. 89 064503
[14] Liu Y C, Wang Q 2005 Phys. Rev. B 72 085420
[15] Grunze M 1999 Science 283 41
[16] Hu H B, Bao L Y, Huang S H 2013 Acta Phys. Sin. 62 124705 (in Chinese) [胡海豹, 鲍路瑶, 黄苏和 2013 62 124705]
[17] He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703
[18] Chang T W, Gartia M R, Seo S, Hsiao A, Liu G L 2014 Nanotechnology 25 145304
[19] Wasan D T, Nikolov A D, Brenner H 2001 Science 291 605
[20] Berebdsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269
[21] Miyamoto S, Kollman P A 1992 J. Comput. Chem. 13 952
[22] Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles (New York: Taylor & Francis Group) pp287-323
[23] Deserno M, Holm C 1998 J. Chem. Phys. 109 7678
[24] Hendrik H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. 112 17281
[25] Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Claredon Press) pp20-22
[26] Kamali R, Kharazmi A 2011 Int. J. Thermal Sci. 50 226
[27] Wang S T, Jiang L 2007 Adv. Mater. 19 3423
[28] Patankar N A 2010 Langmuir 26 8941
-
[1] Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117
[2] Young N O, Goldstein J S, Block M J 1959 J. Fluid Mech. 6 350
[3] Brochard F 1989 Langmuir 5 432
[4] Barton K D, Subramanian R S 1989 J. Colloid. Interf. Sci. 133 211
[5] Ge S, Chen M 2013 Acta Phys. Sin. 62 110204 (in Chinese) [葛宋, 陈民 2013 62 110204]
[6] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L 2010 Nature 463 640
[7] Sommers A D, Brest T J, Eid K F 2013 Langmuir 29 12043
[8] Chaudhury M K, Whitesides G W 1992 Science 256 1539
[9] Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633
[10] Hitoshi S, Satoshi Y 2003 Langmuir 19 529
[11] Kou J L, Mei M F, Lu H J, Wu F M, Fan J T 2012 Phys. Rev. E 85 056301
[12] Whitby M, Quirke N 2007 Nat. Nanotechnol. 2 87
[13] Berezhkovskii A, Hummer G 2002 Phys. Rev. Lett. 89 064503
[14] Liu Y C, Wang Q 2005 Phys. Rev. B 72 085420
[15] Grunze M 1999 Science 283 41
[16] Hu H B, Bao L Y, Huang S H 2013 Acta Phys. Sin. 62 124705 (in Chinese) [胡海豹, 鲍路瑶, 黄苏和 2013 62 124705]
[17] He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y, Chen Y Y 2012 Chin. Phys. B 21 054703
[18] Chang T W, Gartia M R, Seo S, Hsiao A, Liu G L 2014 Nanotechnology 25 145304
[19] Wasan D T, Nikolov A D, Brenner H 2001 Science 291 605
[20] Berebdsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269
[21] Miyamoto S, Kollman P A 1992 J. Comput. Chem. 13 952
[22] Hockney R W, Eastwood J W 1988 Computer Simulation Using Particles (New York: Taylor & Francis Group) pp287-323
[23] Deserno M, Holm C 1998 J. Chem. Phys. 109 7678
[24] Hendrik H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. 112 17281
[25] Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Claredon Press) pp20-22
[26] Kamali R, Kharazmi A 2011 Int. J. Thermal Sci. 50 226
[27] Wang S T, Jiang L 2007 Adv. Mater. 19 3423
[28] Patankar N A 2010 Langmuir 26 8941
Catalog
Metrics
- Abstract views: 7152
- PDF Downloads: 16906
- Cited By: 0