搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微图案化金衬底表面等离子体共振光学特性

陆乃彦 余雪健 万佳伟 翁雨燕 郭俊宏 刘宇

引用本文:
Citation:

微图案化金衬底表面等离子体共振光学特性

陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇

Surface plasmon resonance coupling effect of micro-patterned gold film

Lu Nai-Yan, Yu Xue-Jian, Wan Jia-Wei, Weng Yu-Yan, Guo Jun-Hong, Liu Yu
PDF
导出引用
  • 表面增强拉曼在复杂的生物体系检测方面具有极高的灵敏度,因而具有广泛的生物化学应用前景.本文通过时域有限差分方法对不同形貌金薄膜的拉曼表面增强情况进行了研究.在实验上通过电子束曝光和软模板压印技术制备了相应的衬底并对常规目标物胱氨酸及三聚氰胺的拉曼光谱进行了测量.结果表明,单位面积内结构越复杂,表面增强拉曼越明显.表面增强拉曼散射光谱和场分布特性的计算与实验较为符合,为进一步使用表面增强拉曼作为研究手段提供指导和理论依据.
    Surface-enhanced Raman scattering has a high sensitivity in the detections of complex biological systems, and it has a lot of potential applications in food inspection, biological imaging and biosensors in biochemistry, etc. Here, we investigate the surface Raman enhancements on gold films of different morphologies and further simulate the enhancements by using the finite difference time domain. To prepare the substrates with different morphologies, polymethyl methacrylate (PMMA) is spin coated 2000 rpm in one minute on a silicon wafer, followed by annealing at 180℃ for 5 min. Then, PMMA is etched by a 20 kV electron beam lithography. With the PMMA used as a soft imprint template, polydimethylsiloxane (PDMS) is dropped on the template then removed gently from the template after drying at 60℃ for 4 h. Finally, a gold thin film is prepared on the PDMS by magnetron sputtering with a current of 10 mA for 15 min. We design two kinds of morphologies:a four-way grid and a square morphology. The dimension of the four-way grids is 40 m and the grid width is 4 upm. The dimension of the square is also 4 upm. The cystine and melamine solutions with concentrations of 50, 100, 200 and 400 ppm are deposited on the surfaces of the gold thin film, respectively. The Raman spectra of cystine and melamine solutions are measured on the substrates with four-way grids and dot arrays. The Raman spectra of cystine on two kinds of substrates show no obvious difference. Due to the relatively small enhancement of melamine, the Raman peaks of melamine solutions of concentrations 50 and 100 ppm on the substrate of square morphologies are not easy to detect. On the contrary, all of the Raman spectra of melamine on the substrate of four-way grid morphologies are clear. The result indicates that the substrate with four-way grids has better sensitivity and enhancement performance. To verify the influence of the morphologies of the substrates on surface Raman enhancement and understand the mechanism of the enhancement, we simulate the scattering spectra and field distributions of different morphologies on gold thin films by using the finite difference time domain method. It is indicated that more complex the structure, the more obvious the enhanced Raman spectra will be. The calculations show that the enhancements of four-way grid morphologies are better than those of square morphologies. The predicted results of the surface enhanced Raman scattering are consistent with the measurements. These results will provide guidance and theoretical basis for further applications of surface enhanced.
      通信作者: 翁雨燕, jhguo@njupt.edu.cn;wengyuyan@suda.edu.cn ; 郭俊宏, jhguo@njupt.edu.cn;wengyuyan@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:31401589,21204058,61505085)、亥姆霍兹博士后项目(批准号:PD-146)、江苏省研究生科研创新计划(批准号:SJLX15-0379)和江苏省食品安全与质量控制协同创新中心资助的课题.
      Corresponding author: Weng Yu-Yan, jhguo@njupt.edu.cn;wengyuyan@suda.edu.cn ; Guo Jun-Hong, jhguo@njupt.edu.cn;wengyuyan@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 31401589, 21204058, 61505085), the Helmholtz Postdoctoral Program (Initiative and Networking Fund), Germany(Grant No. PD-146), the Postgraduate Research and Innovation Project of Jiangsu Province, China (Grant No. SJLX15-0379), and the Program of Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
    [1]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215

    [2]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [3]

    Jeanmaire D L, Van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [4]

    Moskovits M 2005 J. Raman Spectrosc. 36 485

    [5]

    Kneipp K, Haka A S, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier K E, Motz J T, Dasari R R, Feld M S 2002 Appl. Spectrosc. 56 150

    [6]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese)[汤建,刘爱萍,李培刚,沈静琴,唐为华2014 63 107801]

    [7]

    Liu B, Zhou P, Liu X M, Sun X, Li H, Lin M 2013 Food Bioprocess Tech. 6 710

    [8]

    Liu B, Lin M, Li H 2010 Sens. Instrumen. Food Qual. 4 13

    [9]

    He S J, Liu K K, Su S, Yan J, Mao X H, Wang D F, He Y, Li L J, Song S P, Fan C H 2012 Anal. Chem. 84 4622

    [10]

    Schmidt J P, Cross S E, Buratto S K 2004 J. Chem. Phys. 121 10657

    [11]

    Zhu Z N, Meng H F, Liu W J, Liu X F, Gong J X, Qiu X H, Jiang L, Wang D, Tang Z Y 2011 Angew. Chem. 50 1593

    [12]

    Lau D, Furman S 2008 Appl. Surf. Sci. 255 2159

    [13]

    He L, Liu Y, Lin M, Mustapha A, Wang Y 2008 Sens. & Instrumen. Food Qual. 2 247

    [14]

    Yu Y T, Wang P, Zhu Y C, Diao J S 2016 Nanoscale Res. Lett. 11 109

    [15]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [16]

    Lu N Y, Weng Y Y 2014 Acta Phys. Sin. 63 228104 (in Chinese)[陆乃彦,翁雨燕2014 63 228104]

    [17]

    Li X H, Yu J C, Lu N Y, Zhang W D, Weng Y Y, Gu Z 2015 Chin. Phys. B 24 104215

    [18]

    Yee K 1966 IEEE Trans. Antennas Propag. 14 302

    [19]

    Ma H, Bendix P M, Oddershede L B 2012 Nano Lett. 12 3954

    [20]

    Kuemin C, Nowack L, Bozano L, Spencer N D, Wolf H 2012 Adv. Funct. Mater. 22 702

    [21]

    Lohse S E, Murphy C J 2013 Chem. Mater. 25 1250

  • [1]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215

    [2]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [3]

    Jeanmaire D L, Van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [4]

    Moskovits M 2005 J. Raman Spectrosc. 36 485

    [5]

    Kneipp K, Haka A S, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier K E, Motz J T, Dasari R R, Feld M S 2002 Appl. Spectrosc. 56 150

    [6]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese)[汤建,刘爱萍,李培刚,沈静琴,唐为华2014 63 107801]

    [7]

    Liu B, Zhou P, Liu X M, Sun X, Li H, Lin M 2013 Food Bioprocess Tech. 6 710

    [8]

    Liu B, Lin M, Li H 2010 Sens. Instrumen. Food Qual. 4 13

    [9]

    He S J, Liu K K, Su S, Yan J, Mao X H, Wang D F, He Y, Li L J, Song S P, Fan C H 2012 Anal. Chem. 84 4622

    [10]

    Schmidt J P, Cross S E, Buratto S K 2004 J. Chem. Phys. 121 10657

    [11]

    Zhu Z N, Meng H F, Liu W J, Liu X F, Gong J X, Qiu X H, Jiang L, Wang D, Tang Z Y 2011 Angew. Chem. 50 1593

    [12]

    Lau D, Furman S 2008 Appl. Surf. Sci. 255 2159

    [13]

    He L, Liu Y, Lin M, Mustapha A, Wang Y 2008 Sens. & Instrumen. Food Qual. 2 247

    [14]

    Yu Y T, Wang P, Zhu Y C, Diao J S 2016 Nanoscale Res. Lett. 11 109

    [15]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [16]

    Lu N Y, Weng Y Y 2014 Acta Phys. Sin. 63 228104 (in Chinese)[陆乃彦,翁雨燕2014 63 228104]

    [17]

    Li X H, Yu J C, Lu N Y, Zhang W D, Weng Y Y, Gu Z 2015 Chin. Phys. B 24 104215

    [18]

    Yee K 1966 IEEE Trans. Antennas Propag. 14 302

    [19]

    Ma H, Bendix P M, Oddershede L B 2012 Nano Lett. 12 3954

    [20]

    Kuemin C, Nowack L, Bozano L, Spencer N D, Wolf H 2012 Adv. Funct. Mater. 22 702

    [21]

    Lohse S E, Murphy C J 2013 Chem. Mater. 25 1250

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学.  , 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [3] 盛子城, 王腾, 周桂耀, 夏长明, 刘建涛, 李波瑶, 樊海霞, 陈云, 侯峙云. 基于空芯微结构光纤拉曼探针的实验研究.  , 2018, 67(18): 184211. doi: 10.7498/aps.67.20180684
    [4] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [5] 华叶, 万红, 陈兴宇, 吴平, 白书欣. 表面微结构对碳化硅晶须掺杂石墨阴极爆炸电子发射性能的影响.  , 2016, 65(16): 168102. doi: 10.7498/aps.65.168102
    [6] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率.  , 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [7] 王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东. 球壳结构金阴极及其X射线光电发射特性.  , 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [8] 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动.  , 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [9] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [10] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究.  , 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [11] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法.  , 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [12] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [13] 章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛. 熔石英后表面坑点型划痕对光场调制的近场模拟.  , 2012, 61(11): 114210. doi: 10.7498/aps.61.114210
    [14] 刘广东, 张业荣. 二维有耗色散介质的时域逆散射方法.  , 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [15] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法.  , 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [16] 袁春华, 李晓红, 唐多昌, 杨宏道, 李国强. Nd:YAG纳秒激光诱导硅表面微结构的演化.  , 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [17] 张玉强, 葛德彪. 一种基于数字信号处理技术的改进通用色散介质移位算子时域有限差分方法.  , 2009, 58(12): 8243-8248. doi: 10.7498/aps.58.8243
    [18] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式.  , 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [19] 刘大刚, 周 俊, 刘盛纲. 用时域有限差分法实现金属支撑杆的计算机模拟.  , 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法.  , 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  6140
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map