-
The low-energy sputtering on Pt (111) surface by Ni atom at incident angle in a range of 0 80 (with respect to the direction normal to the surface) is studied by molecular dynamics simulations. The atomic interaction potential obtained with embedded atom method is used in the simulation. The dependence of sputtering yield, energy and angular distribution of sputtered particles as well as sticking probability of Ni atom on incident angle are discussed. The dependence of sputtering yield on incident angle can be divided into three different regions in , i.e., 20, 20 60, and 60. Based on sticking probability and movement of incident atom, physical mechanism of low-energy sputtering at oblique particle bombardment is suggested. When the incident angle is smaller than 20, the reflection of incident atom by target atom dominates the sputtering process of surface atom, which is similar to the sputtering mechanism for the case of = 0. While for 20 60, the reflection of incident atom is no longer important for the low-energy sputtering. For the case of 60, there occurs no sputtering.
-
Keywords:
- molecular dynamics simulation /
- incident angle /
- low-energy sputtering
[1] Sato Y, Yanagisawa K, Oka N, Nakamura S, Shigesato Y 2009 J. Vac. Sci. Technol. A 27 1166
[2] [3] Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M, Besenbacher F 2008 Phys. Rev. B 77 115427
[4] Zhan Q F, Haesendonck C V, Vandezande S, Temst K 2009 Appl. Phys. Lett. 94 042504
[5] [6] [7] Kai H, Li Y C, Guo D C, Li S, Li Z J 2009 Acta Phys. Sin. 58 4888 (in Chinese) [开 花、李运超、郭德成、李 双、李之杰 2009 58 4888]
[8] Almen O, Bruce G 1961 Nucl. Instrum. Meth. B 11 257
[9] [10] [11] Sigmund P 1969 Phys. Rev. 184 383
[12] [13] Shao Q J, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys.Sin. 40 659 (in Chinese) [邵其鋆、霍裕昆、陈建新、吴士明、潘正瑛 1991 40 659]
[14] Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695
[15] [16] [17] Yan C, L H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese) [颜 超、吕海峰、张 超、张庆瑜 2006 55 1351]
[18] [19] Zhang C, Wang Y L, Yan C, Zhang Q Y 2006 Acta Phys. Sin. 55 2882 (in Chinese) [张 超、王永亮、颜 超、张庆瑜 2006 55 2882]
[20] [21] Zhang C, L H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese) [张 超、吕海峰、张庆瑜 2002 51 2329]
[22] Acosta M, Ares O, Sosa V, Acosta C, Pea J L 1999 J. Vac. Sci. Technol. A 17 2879
[23] [24] [25] Hanson D E, Stephens B C, Saravanan C, Kress J D 2001 J. Vac. Sci. Technol. A 19 820
[26] Abrams C F, Graves D B 1999 J. Appl. Phys. 86 2263
[27] [28] [29] Sekowski M, Burenkov A, Hernndez-Mangas J, Martinez-Limia A, Ryssel H 2008 AIP Conf. Proc. 1066 236
[30] Kenmotsu T, Wada M, Hyakutake T, Muramoto T, Nishida M 2010 Rev. Sci. Intrum. 81 02B109
[31] [32] [33] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[34] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[35] [36] [37] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[38] Oechsner H 1973 J. Phys. 261 37
[39] [40] [41] Whetten T J, Armstead A A, Grzybowski T A, Ruo A L 1984 J. Vac. Sci. Technol. A 2 477
[42] [43] Oyarzabal E,Yu J H, Doerner R P, Tynan G R 2006 J. Appl. Phys. 100 063301
[44] Oechsner H 1970 Phys. Rev. Lett. 24 583
[45] [46] [47] Eckstein W, Roth J, Nagel W, Dohmen R 2004 J. Nucl. Mater. 328 55
[48] [49] Behrisch R, Maderlechner G, Scherzer B M U, Robinson M T 1979 Appl. Phys. A 18 391
-
[1] Sato Y, Yanagisawa K, Oka N, Nakamura S, Shigesato Y 2009 J. Vac. Sci. Technol. A 27 1166
[2] [3] Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M, Besenbacher F 2008 Phys. Rev. B 77 115427
[4] Zhan Q F, Haesendonck C V, Vandezande S, Temst K 2009 Appl. Phys. Lett. 94 042504
[5] [6] [7] Kai H, Li Y C, Guo D C, Li S, Li Z J 2009 Acta Phys. Sin. 58 4888 (in Chinese) [开 花、李运超、郭德成、李 双、李之杰 2009 58 4888]
[8] Almen O, Bruce G 1961 Nucl. Instrum. Meth. B 11 257
[9] [10] [11] Sigmund P 1969 Phys. Rev. 184 383
[12] [13] Shao Q J, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys.Sin. 40 659 (in Chinese) [邵其鋆、霍裕昆、陈建新、吴士明、潘正瑛 1991 40 659]
[14] Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695
[15] [16] [17] Yan C, L H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese) [颜 超、吕海峰、张 超、张庆瑜 2006 55 1351]
[18] [19] Zhang C, Wang Y L, Yan C, Zhang Q Y 2006 Acta Phys. Sin. 55 2882 (in Chinese) [张 超、王永亮、颜 超、张庆瑜 2006 55 2882]
[20] [21] Zhang C, L H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese) [张 超、吕海峰、张庆瑜 2002 51 2329]
[22] Acosta M, Ares O, Sosa V, Acosta C, Pea J L 1999 J. Vac. Sci. Technol. A 17 2879
[23] [24] [25] Hanson D E, Stephens B C, Saravanan C, Kress J D 2001 J. Vac. Sci. Technol. A 19 820
[26] Abrams C F, Graves D B 1999 J. Appl. Phys. 86 2263
[27] [28] [29] Sekowski M, Burenkov A, Hernndez-Mangas J, Martinez-Limia A, Ryssel H 2008 AIP Conf. Proc. 1066 236
[30] Kenmotsu T, Wada M, Hyakutake T, Muramoto T, Nishida M 2010 Rev. Sci. Intrum. 81 02B109
[31] [32] [33] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[34] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[35] [36] [37] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[38] Oechsner H 1973 J. Phys. 261 37
[39] [40] [41] Whetten T J, Armstead A A, Grzybowski T A, Ruo A L 1984 J. Vac. Sci. Technol. A 2 477
[42] [43] Oyarzabal E,Yu J H, Doerner R P, Tynan G R 2006 J. Appl. Phys. 100 063301
[44] Oechsner H 1970 Phys. Rev. Lett. 24 583
[45] [46] [47] Eckstein W, Roth J, Nagel W, Dohmen R 2004 J. Nucl. Mater. 328 55
[48] [49] Behrisch R, Maderlechner G, Scherzer B M U, Robinson M T 1979 Appl. Phys. A 18 391
计量
- 文章访问数: 7002
- PDF下载量: 907
- 被引次数: 0