搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni原子倾斜轰击Pt(111)表面低能溅射现象的分子动力学模拟

颜超 段军红 何兴道

引用本文:
Citation:

Ni原子倾斜轰击Pt(111)表面低能溅射现象的分子动力学模拟

颜超, 段军红, 何兴道

Molecular dynamics simulation of low-energy sputtering of Pt (111) surface by oblique Ni atom bombardment

Yan Chao, Duan Jun-Hong, He Xing-Dao
PDF
导出引用
  • 采用嵌入原子方法的原子间相互作用势,通过分子动力学模拟详细研究了以不同角度入射的低能Ni原子与Pt (111)基体表面相互作用过程中的低能溅射行为.结果表明:随着入射角度从0增加到80,溅射产额Ys和入射原子钉扎系数S的变化均可以根据入射角近似地分为以下三个区域:当 20时,Ys和S几乎保持不变,其值与垂直入射时接近,溅射原子的发射角分布和能量分布也与垂直入射时的情
    The low-energy sputtering on Pt (111) surface by Ni atom at incident angle in a range of 0 80 (with respect to the direction normal to the surface) is studied by molecular dynamics simulations. The atomic interaction potential obtained with embedded atom method is used in the simulation. The dependence of sputtering yield, energy and angular distribution of sputtered particles as well as sticking probability of Ni atom on incident angle are discussed. The dependence of sputtering yield on incident angle can be divided into three different regions in , i.e., 20, 20 60, and 60. Based on sticking probability and movement of incident atom, physical mechanism of low-energy sputtering at oblique particle bombardment is suggested. When the incident angle is smaller than 20, the reflection of incident atom by target atom dominates the sputtering process of surface atom, which is similar to the sputtering mechanism for the case of = 0. While for 20 60, the reflection of incident atom is no longer important for the low-energy sputtering. For the case of 60, there occurs no sputtering.
    • 基金项目: 南昌航空大学人才启动基金(批准号:EA200908182)、航空科学基金(批准号:2009ZE56009)和国家自然科学基金(批准号:50962011)资助的课题.
    [1]

    Sato Y, Yanagisawa K, Oka N, Nakamura S, Shigesato Y 2009 J. Vac. Sci. Technol. A 27 1166

    [2]
    [3]

    Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M, Besenbacher F 2008 Phys. Rev. B 77 115427

    [4]

    Zhan Q F, Haesendonck C V, Vandezande S, Temst K 2009 Appl. Phys. Lett. 94 042504

    [5]
    [6]
    [7]

    Kai H, Li Y C, Guo D C, Li S, Li Z J 2009 Acta Phys. Sin. 58 4888 (in Chinese) [开 花、李运超、郭德成、李 双、李之杰 2009 58 4888]

    [8]

    Almen O, Bruce G 1961 Nucl. Instrum. Meth. B 11 257

    [9]
    [10]
    [11]

    Sigmund P 1969 Phys. Rev. 184 383

    [12]
    [13]

    Shao Q J, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys.Sin. 40 659 (in Chinese) [邵其鋆、霍裕昆、陈建新、吴士明、潘正瑛 1991 40 659]

    [14]

    Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695

    [15]
    [16]
    [17]

    Yan C, L H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese) [颜 超、吕海峰、张 超、张庆瑜 2006 55 1351]

    [18]
    [19]

    Zhang C, Wang Y L, Yan C, Zhang Q Y 2006 Acta Phys. Sin. 55 2882 (in Chinese) [张 超、王永亮、颜 超、张庆瑜 2006 55 2882]

    [20]
    [21]

    Zhang C, L H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese) [张 超、吕海峰、张庆瑜 2002 51 2329]

    [22]

    Acosta M, Ares O, Sosa V, Acosta C, Pea J L 1999 J. Vac. Sci. Technol. A 17 2879

    [23]
    [24]
    [25]

    Hanson D E, Stephens B C, Saravanan C, Kress J D 2001 J. Vac. Sci. Technol. A 19 820

    [26]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 2263

    [27]
    [28]
    [29]

    Sekowski M, Burenkov A, Hernndez-Mangas J, Martinez-Limia A, Ryssel H 2008 AIP Conf. Proc. 1066 236

    [30]

    Kenmotsu T, Wada M, Hyakutake T, Muramoto T, Nishida M 2010 Rev. Sci. Intrum. 81 02B109

    [31]
    [32]
    [33]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [34]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [35]
    [36]
    [37]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [38]

    Oechsner H 1973 J. Phys. 261 37

    [39]
    [40]
    [41]

    Whetten T J, Armstead A A, Grzybowski T A, Ruo A L 1984 J. Vac. Sci. Technol. A 2 477

    [42]
    [43]

    Oyarzabal E,Yu J H, Doerner R P, Tynan G R 2006 J. Appl. Phys. 100 063301

    [44]

    Oechsner H 1970 Phys. Rev. Lett. 24 583

    [45]
    [46]
    [47]

    Eckstein W, Roth J, Nagel W, Dohmen R 2004 J. Nucl. Mater. 328 55

    [48]
    [49]

    Behrisch R, Maderlechner G, Scherzer B M U, Robinson M T 1979 Appl. Phys. A 18 391

  • [1]

    Sato Y, Yanagisawa K, Oka N, Nakamura S, Shigesato Y 2009 J. Vac. Sci. Technol. A 27 1166

    [2]
    [3]

    Dolatshahi-Pirouz A, Hovgaard M B, Rechendorff K, Chevallier J, Foss M, Besenbacher F 2008 Phys. Rev. B 77 115427

    [4]

    Zhan Q F, Haesendonck C V, Vandezande S, Temst K 2009 Appl. Phys. Lett. 94 042504

    [5]
    [6]
    [7]

    Kai H, Li Y C, Guo D C, Li S, Li Z J 2009 Acta Phys. Sin. 58 4888 (in Chinese) [开 花、李运超、郭德成、李 双、李之杰 2009 58 4888]

    [8]

    Almen O, Bruce G 1961 Nucl. Instrum. Meth. B 11 257

    [9]
    [10]
    [11]

    Sigmund P 1969 Phys. Rev. 184 383

    [12]
    [13]

    Shao Q J, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys.Sin. 40 659 (in Chinese) [邵其鋆、霍裕昆、陈建新、吴士明、潘正瑛 1991 40 659]

    [14]

    Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695

    [15]
    [16]
    [17]

    Yan C, L H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese) [颜 超、吕海峰、张 超、张庆瑜 2006 55 1351]

    [18]
    [19]

    Zhang C, Wang Y L, Yan C, Zhang Q Y 2006 Acta Phys. Sin. 55 2882 (in Chinese) [张 超、王永亮、颜 超、张庆瑜 2006 55 2882]

    [20]
    [21]

    Zhang C, L H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese) [张 超、吕海峰、张庆瑜 2002 51 2329]

    [22]

    Acosta M, Ares O, Sosa V, Acosta C, Pea J L 1999 J. Vac. Sci. Technol. A 17 2879

    [23]
    [24]
    [25]

    Hanson D E, Stephens B C, Saravanan C, Kress J D 2001 J. Vac. Sci. Technol. A 19 820

    [26]

    Abrams C F, Graves D B 1999 J. Appl. Phys. 86 2263

    [27]
    [28]
    [29]

    Sekowski M, Burenkov A, Hernndez-Mangas J, Martinez-Limia A, Ryssel H 2008 AIP Conf. Proc. 1066 236

    [30]

    Kenmotsu T, Wada M, Hyakutake T, Muramoto T, Nishida M 2010 Rev. Sci. Intrum. 81 02B109

    [31]
    [32]
    [33]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [34]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [35]
    [36]
    [37]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [38]

    Oechsner H 1973 J. Phys. 261 37

    [39]
    [40]
    [41]

    Whetten T J, Armstead A A, Grzybowski T A, Ruo A L 1984 J. Vac. Sci. Technol. A 2 477

    [42]
    [43]

    Oyarzabal E,Yu J H, Doerner R P, Tynan G R 2006 J. Appl. Phys. 100 063301

    [44]

    Oechsner H 1970 Phys. Rev. Lett. 24 583

    [45]
    [46]
    [47]

    Eckstein W, Roth J, Nagel W, Dohmen R 2004 J. Nucl. Mater. 328 55

    [48]
    [49]

    Behrisch R, Maderlechner G, Scherzer B M U, Robinson M T 1979 Appl. Phys. A 18 391

  • [1] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [4] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [5] 胡杨, 杨海亮, 孙剑锋, 孙江, 张鹏飞. 强流电子束入射角二维分布测量方法.  , 2015, 64(24): 245203. doi: 10.7498/aps.64.245203
    [6] 宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏. 含氢碳膜的生长机制: 分子动力学模拟研究低能量CH基团的作用.  , 2012, 61(3): 030701. doi: 10.7498/aps.61.030701
    [7] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [8] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟.  , 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [9] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [10] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟.  , 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [11] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟.  , 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [12] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟.  , 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [13] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究.  , 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [14] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [15] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟.  , 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [16] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [17] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [18] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟.  , 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [19] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究.  , 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟.  , 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  7002
  • PDF下载量:  907
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-30
  • 修回日期:  2010-10-26
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map