-
运用准经典轨线方法(QCT), 基于Abrahamsson等构造的4A势能面(Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400), 在碰撞能为0.06 eV时, 对C(3P)+NO(X2 )CO(X1+)+N(4S)反应立体动力学性质进行了理论研究. 在考虑反应物NO转动和振动激发的条件下, 计算了质心坐标系下k-j'矢量(k与j'分别为反应物速度与产物角动量)相关的P(r)分布和k-k'-j'矢量(k'为产物相对速度)相关的P(r)分布. 此外还计算了该反应的三个极化微分截面(2/)(d00/dt), (2/)(d20/dt)以及(2/)(d22+dt). 计算结果表明转动和振动激发对产物取向影响较大而对定向影响较小; 对于三个极化微分截面, 转动激发的影响不大, 而振动激发的影响则较大.Studies on the dynamical stereochemistry of the titled reaction are carried out by the quasi-classical trajectory (QCT) method based on a new accurate 4A potential energy surface constructed by Abrahamsson and coworkers (Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400) at a collision energy of 0.06 eV. The distribution p(r) of the angle between k-j' and the angle distribution P(r in terms of k-k'-j' correlation have been calculated. Results indicate that the rotational angular momentum vector j' of CO is preferentially aligned perpendicular to k and also oriented with respect to the k-k' plane. Three polarization-dependent differential cross sections (2/)(d00/dt), (2/)(d20/dt), and (2/)(d22+/dt) have also been calculated. The preference of backward scattering is found from the results of (2/)(d00/dt). The behavior of (2/)(d20/dt) shows that the variation trend is opposite to that of (2/)(d00/dt), which indicates that j' is preferentially polarized along the direction perpendicular to k. The value of (2/)(d22/dt) is negative for all scattering angles, indicating the marked preference of product alignment along the y-axis. Furthermore, the influences of initial rotational and vibrational excitation on the reaction are shown and discussed. It is found that the initial vibrational excitation and rotational excitation have a larger influence on the alignment distribution of j' but a weaker effect on the orientation distribution of j' in the titled reaction. The influence of the initial vibrational excitation on the three polarization-dependent differential cross sections of product CO is stronger than that of the initial rotational excitation effect.
-
Keywords:
- stereodynamics /
- quasi-classical trajectory method /
- rotational excitation /
- vibrational excitation
[1] Boger G I, Sternberg A 2005 Astrophys. J. 632 302
[2] Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1
[3] Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417
[4] Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543
[5] Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525
[6] Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455
[7] Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180
[8] Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519
[9] Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501
[10] Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728
[11] Halvick P, Rayez J C 1989 Chem. Phys. 131 375
[12] Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579
[13] Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99
[14] Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613
[15] Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439
[16] Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400
[17] Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507
[18] Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705
[19] Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323
[20] Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517
[21] Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281
[22] Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115
[23] Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]
[24] Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197
[25] Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192
[26] Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 62 023401]
[27] Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401
[28] Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309
[29] Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081
[30] Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402
[31] Wei Q 2015 Chin. Phys. Lett. 32 013101
[32] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[33] Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204
[34] Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699
[35] Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463
[36] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463
[37] Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815
[38] Liu S L, Shi Y 2011 Chin. Phys. B 20 013404
[39] Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 62 073105]
[40] Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[41] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[42] Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301
[43] Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286
-
[1] Boger G I, Sternberg A 2005 Astrophys. J. 632 302
[2] Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1
[3] Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417
[4] Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543
[5] Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525
[6] Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455
[7] Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180
[8] Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519
[9] Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501
[10] Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728
[11] Halvick P, Rayez J C 1989 Chem. Phys. 131 375
[12] Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579
[13] Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99
[14] Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613
[15] Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439
[16] Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400
[17] Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507
[18] Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705
[19] Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323
[20] Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517
[21] Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281
[22] Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115
[23] Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]
[24] Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197
[25] Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192
[26] Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 62 023401]
[27] Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401
[28] Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309
[29] Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081
[30] Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402
[31] Wei Q 2015 Chin. Phys. Lett. 32 013101
[32] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[33] Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204
[34] Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699
[35] Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463
[36] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463
[37] Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815
[38] Liu S L, Shi Y 2011 Chin. Phys. B 20 013404
[39] Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 62 073105]
[40] Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[41] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[42] Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301
[43] Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286
计量
- 文章访问数: 5592
- PDF下载量: 122
- 被引次数: 0