搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器

陈旭生 李九生

引用本文:
Citation:

缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器

陈旭生, 李九生

Tunable terahertz absorber with multi-defect combination embedded VO2 thin film structure

Chen Xu-Sheng, Li Jiu-Sheng
PDF
HTML
导出引用
  • 提出一种多缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器, 它由上表面金属图案层、基体和底层金属板三层结构组成, 在上表面和基体之间嵌入二氧化钒介质. 计算结果表明在f = 4.08 THz和f = 4.33 THz两频点吸收率分别为99.8%和99.9%. 通过改变外界环境温度可控制二氧化钒相变, 从而使两个频点吸收率从99.8%变化到1.0%. 改变入射角和偏振态, 计算结果表明在入射角0°—40°, 吸收器在TE和TM两种极化波下吸收率都能在98%以上. 该太赫兹波吸收器具有高吸收、动态调谐、极化不敏感等特性, 本文所设计的可调太赫兹吸收器在太赫兹波相关领域, 例如探测器、开关、动态调制器、隐身技术等方面具有很好的应用前景.
    The metamaterial absorber has the advantages of thin thickness, small size, simple structure and high absorption. As is different from the traditional metamaterial absorber, the adjustable material is used for designing the structure, which can realize the dynamic modulation of the device by changing the external factors without changing the device structure. In this paper, an adjustable terahertz absorber with multi-defect combination embedded VO2 thin film is proposed. It is composed of three layers: the upper metal pattern layer, the substrate and the bottom metal plate. Vanadium dioxide medium is sandwiched between the upper surface and the substrate. The absorption performance of the absorber composed of different defect combinations is studied, and the electric field distribution of each combination is analyzed. At the same time, the influences of defects on the absorption performance of the absorber are compared with each other and analyzed. After comprehensive analysis, the defects are combined into the final proposed structure, and the electric field distribution and surface current distribution are analyzed. The relevant parameters affecting the performance of the absorber are scanned and analyzed, and the final optimized structural parameters are obtained. The results show that the absorption rate at f = 4.08 THz and f = 4.33 THz are 99.8% and 99.9%, respectively. The phase transition of vanadium dioxide can be controlled by changing ambient temperature, so that the absorption rates of two frequency points can be changed from 99.8% to 1.0%. In addition, the surface normalized impedance of the proposed absorber is analyzed, which shows that the normalized surface impedance of the designed absorber matches the impedance of the free space well. By changing the incident angle and polarization of terahertz wave, the results show that the absorption rate of the absorber under TE and TM polarization wave both can be more than 98% with the incident angle ranging from 0° to 40°. The proposed terahertz wave absorber has the characteristics of high absorption, dynamic tuning and insensitive polarization. It has good application prospects in terahertz wave related fields such as detectors and stealth technology.
      通信作者: 李九生, jshli@126.com
    • 基金项目: 国家自然科学基金(批准号: 61871355, 61831012)资助的课题
      Corresponding author: Li Jiu-Sheng, jshli@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012)
    [1]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X 2012 Opt. Express. 20 635Google Scholar

    [2]

    Tao H, Bingham C M, Strikwerda A C, Pilon D 2008 Phys. Rev. B 78 241103Google Scholar

    [3]

    Karaaslan M, Bakır M, Akgol O, Unal E 2017 Opto-Electronics Rev. 25 318Google Scholar

    [4]

    Chen C, Sheng Y, Wang J 2017 Opt. Commun. 406 145Google Scholar

    [5]

    Landy N I, Bingham C M, Tyler T, Jokerst N M 2009 Phys. Rev. B 79 125104Google Scholar

    [6]

    Wan C, Ho Y, Nunez-Sanchez S, Chen L F, Lopez-Garcia M, Pugh J R, Zhu B F, Selvaraj P, Mallick T K, Sundaram S, Cryan J M 2016 Nano. Energy. 26 392Google Scholar

    [7]

    Lin K, Chen H, Lai Y, Yu C, Lee Y, Su P, Yen Y T, Chen B 2017 Nano. Energy. 37 61Google Scholar

    [8]

    Park J, Kim H J, Nam S H, Kim H, Choi H, Jang Y J, Lee J S, Shin J, Lee H, Baik J M 2016 Nano. Energy. 21 115Google Scholar

    [9]

    Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi S I 2016 Sci. Rep. 6 30650Google Scholar

    [10]

    Tan F, Li T, Wang N, Lai S K, Tsoi C C, Yu W, Zhang X 2016 Sci. rep. 6 33049Google Scholar

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [12]

    李爱云, 刘凤收, 王猛, 王岳平, 杨其利 2019 激光杂志 40 28Google Scholar

    Li A Y, Liu F S, Wang M, Wang Y P, Yang Q L 2019 Laser. J. 40 28Google Scholar

    [13]

    Grzeskiewicz B, Sierakowski A, Marczewski J, Pałka N, Wolarz E 2018 Opt-electronics. Rev. 26 329Google Scholar

    [14]

    Bakshi S C, Mitra D, Minz L 2018 Plasmonics 13 1843Google Scholar

    [15]

    Mohanty A, Acharya O P, Appasani B, Mohapatra S K 2018 Photonic. Nanostruct. 32 74Google Scholar

    [16]

    Karimi P, Maddahali M, Bakhtafrouz A, Shahabadi M 2019 IET Optoelectronics 13 5Google Scholar

    [17]

    Biabanifard M, Abrishamian M S 2018 Appl. Phys. A 124 826Google Scholar

    [18]

    Wang L S, Ding C L, Xia D Y, Ding X Y, Wang Y 2019 IOP Conf. Ser.: Mater. Sci. Eng. 479 012038Google Scholar

    [19]

    Daraei O M, Safari M M, Bemani M 2019 eprint ariXiv: 1902.05254

    [20]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204Google Scholar

    [21]

    Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B 76 125408Google Scholar

  • 图 1  多缺陷组合结构可调太赫兹吸收器 (a) 单元结构三维立体图; (b) 单元俯视图

    Fig. 1.  Adjustable terahertz absorber with multiple defects: (a) Three-dimensional of unit structure; (b) top view of unit structure.

    图 2  不同组合形成的吸收器吸收曲线

    Fig. 2.  Absorption curves of the absorber formed by different combinations.

    图 3  TE模式下电场E分布图 (a) 组合一, f = 4.06 THz; (d) 组合一, f = 4.27 THz; (b) 组合二, f = 4.03 THz; (e) 组合二, f = 4.33 THz; (c) 组合三, f = 4.06 THz; (f) 组合三, f = 4.39 THz

    Fig. 3.  Electric field distribution in TE mode: (a) Combination 1, f = 4.06 THz; (d) combination 2, f = 4.27 THz; (b) combination 2, f = 4.03 THz; (e) combination 2, f = 4.33 THz; (c) combination 3, f = 4.06 THz; (f) combination 3, f = 4.39 THz.

    图 4  多缺陷组合TE模式下电场E和电流A分布图 (a) f = 4.08 THz, 电场分布; (b) f = 4.33 THz, 电场分布; (c) f = 4.08 THz, 电流分布; (d) f = 4.33 THz, 电流分布

    Fig. 4.  Electric field and current distribution in TE mode with multiple defects: (a) f = 4.08 THz, electric field distribution; (b) f = 4.33 THz, electric field distribution; (c) f = 4.08 THz, current distribution; (d) f = 4.33 THz, current distribution.

    图 5  结构参数改变对应的吸收率曲线 (a) 缺陷十字架距离中心距离R; (b) 缺陷圆环缺陷宽度W; (c) 中心圆环宽度D

    Fig. 5.  Absorption curves corresponding to the change of structural parameters: (a) Defect cross distance from center R; (b) defect ring width W; (c) center ring width D.

    图 6  VO2的电导率随温度的变化

    Fig. 6.  Changes of VO2 conductivity with temperature.

    图 7  (a) 不同温度下吸收器的吸收率; (b) 吸收器的归一化表面阻抗

    Fig. 7.  (a) Absorption of the absorber at different tempera-tures; (b) normalized surface impedance of the absorber.

    图 8  太赫兹吸收谱 (a) TE模式; (b) TM模式

    Fig. 8.  Terahertz absorption spectrum: (a) TE mode; (b) TM mode.

    Baidu
  • [1]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X 2012 Opt. Express. 20 635Google Scholar

    [2]

    Tao H, Bingham C M, Strikwerda A C, Pilon D 2008 Phys. Rev. B 78 241103Google Scholar

    [3]

    Karaaslan M, Bakır M, Akgol O, Unal E 2017 Opto-Electronics Rev. 25 318Google Scholar

    [4]

    Chen C, Sheng Y, Wang J 2017 Opt. Commun. 406 145Google Scholar

    [5]

    Landy N I, Bingham C M, Tyler T, Jokerst N M 2009 Phys. Rev. B 79 125104Google Scholar

    [6]

    Wan C, Ho Y, Nunez-Sanchez S, Chen L F, Lopez-Garcia M, Pugh J R, Zhu B F, Selvaraj P, Mallick T K, Sundaram S, Cryan J M 2016 Nano. Energy. 26 392Google Scholar

    [7]

    Lin K, Chen H, Lai Y, Yu C, Lee Y, Su P, Yen Y T, Chen B 2017 Nano. Energy. 37 61Google Scholar

    [8]

    Park J, Kim H J, Nam S H, Kim H, Choi H, Jang Y J, Lee J S, Shin J, Lee H, Baik J M 2016 Nano. Energy. 21 115Google Scholar

    [9]

    Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi S I 2016 Sci. Rep. 6 30650Google Scholar

    [10]

    Tan F, Li T, Wang N, Lai S K, Tsoi C C, Yu W, Zhang X 2016 Sci. rep. 6 33049Google Scholar

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [12]

    李爱云, 刘凤收, 王猛, 王岳平, 杨其利 2019 激光杂志 40 28Google Scholar

    Li A Y, Liu F S, Wang M, Wang Y P, Yang Q L 2019 Laser. J. 40 28Google Scholar

    [13]

    Grzeskiewicz B, Sierakowski A, Marczewski J, Pałka N, Wolarz E 2018 Opt-electronics. Rev. 26 329Google Scholar

    [14]

    Bakshi S C, Mitra D, Minz L 2018 Plasmonics 13 1843Google Scholar

    [15]

    Mohanty A, Acharya O P, Appasani B, Mohapatra S K 2018 Photonic. Nanostruct. 32 74Google Scholar

    [16]

    Karimi P, Maddahali M, Bakhtafrouz A, Shahabadi M 2019 IET Optoelectronics 13 5Google Scholar

    [17]

    Biabanifard M, Abrishamian M S 2018 Appl. Phys. A 124 826Google Scholar

    [18]

    Wang L S, Ding C L, Xia D Y, Ding X Y, Wang Y 2019 IOP Conf. Ser.: Mater. Sci. Eng. 479 012038Google Scholar

    [19]

    Daraei O M, Safari M M, Bemani M 2019 eprint ariXiv: 1902.05254

    [20]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204Google Scholar

    [21]

    Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B 76 125408Google Scholar

  • [1] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱.  , 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2022, (): . doi: 10.7498/aps.71.20211996
    [5] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究.  , 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [6] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析.  , 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [7] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [8] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用.  , 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [9] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面.  , 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [10] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变.  , 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [11] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [12] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性.  , 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [13] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器.  , 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [14] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究.  , 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [15] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究.  , 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [16] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证.  , 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [17] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究.  , 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [18] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究.  , 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究.  , 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究.  , 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
计量
  • 文章访问数:  8381
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-07
  • 修回日期:  2019-11-05
  • 刊出日期:  2020-01-20

/

返回文章
返回
Baidu
map