-
The energies and binding energies of the bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well are investigated by means of a modified Lee-Low-Pines variational method. Contributions of ground state binding energies and different branches of a longwave optical phonon mode to the energies and binding energies of the bound polarons as a function of the well width and impurity center position are given. Effects of the anisotropy of phonon frequency and built-in electric field in the system on the energies and binding energies, and the electron and impurity center-optical phonon interaction, are included in the calculations. Results show that the contributions of optical phonons and built-in electric field to the ground state energy and binding energy of the bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well are very large, and result in the reduction of energy and binding energy. The binding energy decreases monotonically with increasing well width, and the speed of decrease is fast in the narrower well while the speed of decrease is slow in the wider well. Contributions of different branches of phonons to the energies and binding energies as a function of well width are different. In the narrower well, contributions of the confined phonon (withoud built-in electric field) are smaller than those of the interface and half-space phonons, while in the wider well, contributions of the confined phonons are larger than those of the interface and half-space phonons. Contributions of the confined phonon (with built-in electric field) become larger, whereas those of the interface and half-space phonons become smaller, and the total contribution of phonons also have obvious change. Contributions of these optical phonons to the ground state energies and binding energies of the bound polarons in In0.19Ga0.81N/GaN quantum wells are larger than the corresponding values (about 3.11.6 meV and 1.50.3 meV) of those in GaAs/Al0.19Ga0.81As quantum wells. The binding energies in In0.19Ga0.81N/GaN quantum wells decrease monotonically with increasing location Z0 of the impurity center for a constant well width d =8 nm, and the decrease of speed becomes faster. As the position of the impurity center is increasing, the contributions of the the interface and half-space phonons decrease slowly, and those of the confined phonons increase slowly as well.
-
Keywords:
- bound polaron /
- binding energy /
- quantum well /
- built-in electric field
[1] Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312
[2] [3] Shan W, Walukiewicz W, Yu K M, Ager J W, Haller E E, Geisz J F, Friedman D J, Olson J M, Kurtz S R, Nauka C 2000 Phys. Rev. B 62 4211
[4] Karch K, Wagner J M, Bechstedt F 1998 Phys. Rev. B 57 7043
[5] [6] [7] Akasaki I, Amano H Jan. J. Appl. Phys. Part I 36 (9A) 5393
[8] Nakamura S 1997 Solid. State. Commun. 102 237
[9] [10] Lee B C, Kim K V, StroscioM A, Dutta M 1997 Phys. Rev. B 56 997
[11] [12] Malyutenko V K, Bolgov S S, Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110
[13] [14] Lee W, Kim M H, Zhu D 2010 J. Appl. Phys. 107 063102
[15] [16] [17] Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J, Sopanen M 2011 J. Appl. Phys. 109 08310
[18] [19] Liu Z Q 2012 Appl. Phys. Lett. 101 261106
[20] [21] Belabbes A, de Carvalho L C, Schleife A, Bechstedt F 2011 Phys. Rev. B 84 125108
[22] Lee C W, Peter A J 2011 Chin. Phys. B 20 077104
[23] [24] [25] Wang F, Ji Z W, Wang Q, Wang, X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525
[26] [27] Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101
[28] [29] Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502
[30] [31] Wang H, Farias G A, Freire V N 1999 Phys. Rev. B 60 5705
[32] Zhang J F, Wang C, Zhang J C 2006 Chin. Phys. 15 1060
[33] [34] Hylton N P, Dawson P, Kappers M J, Aleese C M, Humphreys C J 2007 Phys. Rev. B 76 205403
[35] [36] [37] Zhang L 2006 Superlattice. Microst. 40 144
[38] Graham D M, Dawson P, Godfrey M J 2006 Appl. Phys. Lett. 89 211901
[39] [40] [41] Chen D, Guo Y, Wang L 2007 J. Appl. Phys. 101 053712
[42] Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys. Sin. 59 4996 (in Chinese)[朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 59 4996]
[43] [44] [45] Huang W D, Chen J D, Ren Y J 2012 J. Appl. Phys. 112 053704
[46] [47] Funato M, Matsuda K, Banal R G, Ishii R, Kawakami Y 2013 Phys. Rev. B 87 041306
[48] Xia H, Feng Y, Patterson R, Jia X, Shrestha S, Conibeer G 2013 J. Appl. Phys. 113 164304
[49] [50] [51] Chen S J, Wang G H 2013 J. Appl. Phys. 113 023515
[52] Pozina G, Hemmingsson C, Amano H, Monear B 2013 Appl. Phys. Lett. 102 082110
[53] [54] [55] Dong L, Mantese J V, Avrutin V, zgr U, Morko H, Alpay S P 2013 J. Appl. Phys. 114 043715
[56] [57] Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115
[58] [59] Park S H, Moon Y T 2013 J. Appl. Phys. 114 083107
[60] Liang M M, Weng G E, Zhang J Y, Cai X M, L X Q, Ying L Y, Zhang B P 2014 Chin. Phys. B 23 054211
[61] [62] Lee B C, Kim K W, Stroscio M A, Dutta M 1998 Phys. Rev. B 58 4860
[63] [64] Komirenko S M, Kim K W, Stroscio M A, Dutta M 1999 Phys. Rev. B 59 5013
[65] [66] Shi J J 2003 Phys. Rev. B 68 165335
[67] [68] Shi J J, Chu X L, Goldys E M 2004 Phys. Rev. B 70 115318
[69] [70] [71] Li L, Liu D, Shi J J 2005 Eur. Phys. J. B 44 401
[72] Bernardini F, Fiorentini V 1999 Phys. Stat. Sol. B 216 391
[73] [74] Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Di Carlo A, Sala F D, Lugli P 2000 Phys. Rev. B 61 2711
[75] [76] [77] Shi J J, Gan Z Z 2003 J. Appl. Phys. 94 407
[78] [79] Zhao F Q, Gong J 2007 Chin. Phys. Lett. 24 1327
[80] Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese)[赵凤岐, 周炳卿 2007 56 4856]
[81] [82] [83] Zhao F Q, Zhang M, Wurentuya 2011 J. Phys. Soc. Japan 80 94713
[84] Zhao F Q, Yong M 2012 Chin. Phys B 21 107103
[85] [86] [87] Liu D, Shi J J, Butcher K S A 2006 Superlattices and Microstructures 40 180
[88] [89] Zhang L, Shi J J 2007 Commun. Theor. Phys. 47 349
[90] [91] Cai J, Shi J J 2008 Solid State Commun. 145 235
[92] [93] Zhu Y H, Shi J J 2009 Physica E 41 746
[94] [95] Vurgaftman I, Melyer J R 2003 J. Appl. Phys. 94 3675
[96] [97] Graham D M, Soltani-Vala A, Dawsos P, Godfrey M J, Smeeton T M, Barnard J S, Kappers M J, Humphreys C J, Thrush E J 2005 J. Appl. Phys. 97 103508
[98] [99] Liang X X, Wang X 1991 Phys. Rev. B. 43 5155
[100] [101] Liang X X, Yang J S 1996 Solid State Commun. 100 629
[102] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[103] [104] Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H, Suski T 1992 Phys. Rev. B 45 13307
[105] [106] Azuhata T, Sota T, Suzuki K, Nakamura S 1995 J. Phys.: Condens. Matter 7 L129
[107] [108] Misek J, Srobar F 1979 Electrotech. Cas. 30 690
[109] [110] Harima H 2002 J. Phys.: Condens. Matter 14 R967
[111] [112] Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310
[113] [114] [115] Mora-Ramos M E 2001 Phys. Stat. Sol. 223 843
-
[1] Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312
[2] [3] Shan W, Walukiewicz W, Yu K M, Ager J W, Haller E E, Geisz J F, Friedman D J, Olson J M, Kurtz S R, Nauka C 2000 Phys. Rev. B 62 4211
[4] Karch K, Wagner J M, Bechstedt F 1998 Phys. Rev. B 57 7043
[5] [6] [7] Akasaki I, Amano H Jan. J. Appl. Phys. Part I 36 (9A) 5393
[8] Nakamura S 1997 Solid. State. Commun. 102 237
[9] [10] Lee B C, Kim K V, StroscioM A, Dutta M 1997 Phys. Rev. B 56 997
[11] [12] Malyutenko V K, Bolgov S S, Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110
[13] [14] Lee W, Kim M H, Zhu D 2010 J. Appl. Phys. 107 063102
[15] [16] [17] Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J, Sopanen M 2011 J. Appl. Phys. 109 08310
[18] [19] Liu Z Q 2012 Appl. Phys. Lett. 101 261106
[20] [21] Belabbes A, de Carvalho L C, Schleife A, Bechstedt F 2011 Phys. Rev. B 84 125108
[22] Lee C W, Peter A J 2011 Chin. Phys. B 20 077104
[23] [24] [25] Wang F, Ji Z W, Wang Q, Wang, X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525
[26] [27] Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101
[28] [29] Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502
[30] [31] Wang H, Farias G A, Freire V N 1999 Phys. Rev. B 60 5705
[32] Zhang J F, Wang C, Zhang J C 2006 Chin. Phys. 15 1060
[33] [34] Hylton N P, Dawson P, Kappers M J, Aleese C M, Humphreys C J 2007 Phys. Rev. B 76 205403
[35] [36] [37] Zhang L 2006 Superlattice. Microst. 40 144
[38] Graham D M, Dawson P, Godfrey M J 2006 Appl. Phys. Lett. 89 211901
[39] [40] [41] Chen D, Guo Y, Wang L 2007 J. Appl. Phys. 101 053712
[42] Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys. Sin. 59 4996 (in Chinese)[朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 59 4996]
[43] [44] [45] Huang W D, Chen J D, Ren Y J 2012 J. Appl. Phys. 112 053704
[46] [47] Funato M, Matsuda K, Banal R G, Ishii R, Kawakami Y 2013 Phys. Rev. B 87 041306
[48] Xia H, Feng Y, Patterson R, Jia X, Shrestha S, Conibeer G 2013 J. Appl. Phys. 113 164304
[49] [50] [51] Chen S J, Wang G H 2013 J. Appl. Phys. 113 023515
[52] Pozina G, Hemmingsson C, Amano H, Monear B 2013 Appl. Phys. Lett. 102 082110
[53] [54] [55] Dong L, Mantese J V, Avrutin V, zgr U, Morko H, Alpay S P 2013 J. Appl. Phys. 114 043715
[56] [57] Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115
[58] [59] Park S H, Moon Y T 2013 J. Appl. Phys. 114 083107
[60] Liang M M, Weng G E, Zhang J Y, Cai X M, L X Q, Ying L Y, Zhang B P 2014 Chin. Phys. B 23 054211
[61] [62] Lee B C, Kim K W, Stroscio M A, Dutta M 1998 Phys. Rev. B 58 4860
[63] [64] Komirenko S M, Kim K W, Stroscio M A, Dutta M 1999 Phys. Rev. B 59 5013
[65] [66] Shi J J 2003 Phys. Rev. B 68 165335
[67] [68] Shi J J, Chu X L, Goldys E M 2004 Phys. Rev. B 70 115318
[69] [70] [71] Li L, Liu D, Shi J J 2005 Eur. Phys. J. B 44 401
[72] Bernardini F, Fiorentini V 1999 Phys. Stat. Sol. B 216 391
[73] [74] Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Di Carlo A, Sala F D, Lugli P 2000 Phys. Rev. B 61 2711
[75] [76] [77] Shi J J, Gan Z Z 2003 J. Appl. Phys. 94 407
[78] [79] Zhao F Q, Gong J 2007 Chin. Phys. Lett. 24 1327
[80] Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese)[赵凤岐, 周炳卿 2007 56 4856]
[81] [82] [83] Zhao F Q, Zhang M, Wurentuya 2011 J. Phys. Soc. Japan 80 94713
[84] Zhao F Q, Yong M 2012 Chin. Phys B 21 107103
[85] [86] [87] Liu D, Shi J J, Butcher K S A 2006 Superlattices and Microstructures 40 180
[88] [89] Zhang L, Shi J J 2007 Commun. Theor. Phys. 47 349
[90] [91] Cai J, Shi J J 2008 Solid State Commun. 145 235
[92] [93] Zhu Y H, Shi J J 2009 Physica E 41 746
[94] [95] Vurgaftman I, Melyer J R 2003 J. Appl. Phys. 94 3675
[96] [97] Graham D M, Soltani-Vala A, Dawsos P, Godfrey M J, Smeeton T M, Barnard J S, Kappers M J, Humphreys C J, Thrush E J 2005 J. Appl. Phys. 97 103508
[98] [99] Liang X X, Wang X 1991 Phys. Rev. B. 43 5155
[100] [101] Liang X X, Yang J S 1996 Solid State Commun. 100 629
[102] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[103] [104] Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H, Suski T 1992 Phys. Rev. B 45 13307
[105] [106] Azuhata T, Sota T, Suzuki K, Nakamura S 1995 J. Phys.: Condens. Matter 7 L129
[107] [108] Misek J, Srobar F 1979 Electrotech. Cas. 30 690
[109] [110] Harima H 2002 J. Phys.: Condens. Matter 14 R967
[111] [112] Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310
[113] [114] [115] Mora-Ramos M E 2001 Phys. Stat. Sol. 223 843
Catalog
Metrics
- Abstract views: 5536
- PDF Downloads: 492
- Cited By: 0