Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of optical phonon and built-in electric field on the binding energy of bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well

Zhao Feng-Qi Zhang Min Li Zhi-Qiang Ji Yan-Ming

Citation:

Effects of optical phonon and built-in electric field on the binding energy of bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well

Zhao Feng-Qi, Zhang Min, Li Zhi-Qiang, Ji Yan-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The energies and binding energies of the bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well are investigated by means of a modified Lee-Low-Pines variational method. Contributions of ground state binding energies and different branches of a longwave optical phonon mode to the energies and binding energies of the bound polarons as a function of the well width and impurity center position are given. Effects of the anisotropy of phonon frequency and built-in electric field in the system on the energies and binding energies, and the electron and impurity center-optical phonon interaction, are included in the calculations. Results show that the contributions of optical phonons and built-in electric field to the ground state energy and binding energy of the bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well are very large, and result in the reduction of energy and binding energy. The binding energy decreases monotonically with increasing well width, and the speed of decrease is fast in the narrower well while the speed of decrease is slow in the wider well. Contributions of different branches of phonons to the energies and binding energies as a function of well width are different. In the narrower well, contributions of the confined phonon (withoud built-in electric field) are smaller than those of the interface and half-space phonons, while in the wider well, contributions of the confined phonons are larger than those of the interface and half-space phonons. Contributions of the confined phonon (with built-in electric field) become larger, whereas those of the interface and half-space phonons become smaller, and the total contribution of phonons also have obvious change. Contributions of these optical phonons to the ground state energies and binding energies of the bound polarons in In0.19Ga0.81N/GaN quantum wells are larger than the corresponding values (about 3.11.6 meV and 1.50.3 meV) of those in GaAs/Al0.19Ga0.81As quantum wells. The binding energies in In0.19Ga0.81N/GaN quantum wells decrease monotonically with increasing location Z0 of the impurity center for a constant well width d =8 nm, and the decrease of speed becomes faster. As the position of the impurity center is increasing, the contributions of the the interface and half-space phonons decrease slowly, and those of the confined phonons increase slowly as well.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10964007, 11264027), the Project of Prairie Excellent Specialist of Inner Mongolia, and the Thousand, Hundred and Ten Talent Cultivation Project Fund of Inner Mongolia Normal University, China (Grant No. RCPY-2-2012-K-039).
    [1]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [2]
    [3]

    Shan W, Walukiewicz W, Yu K M, Ager J W, Haller E E, Geisz J F, Friedman D J, Olson J M, Kurtz S R, Nauka C 2000 Phys. Rev. B 62 4211

    [4]

    Karch K, Wagner J M, Bechstedt F 1998 Phys. Rev. B 57 7043

    [5]
    [6]
    [7]

    Akasaki I, Amano H Jan. J. Appl. Phys. Part I 36 (9A) 5393

    [8]

    Nakamura S 1997 Solid. State. Commun. 102 237

    [9]
    [10]

    Lee B C, Kim K V, StroscioM A, Dutta M 1997 Phys. Rev. B 56 997

    [11]
    [12]

    Malyutenko V K, Bolgov S S, Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110

    [13]
    [14]

    Lee W, Kim M H, Zhu D 2010 J. Appl. Phys. 107 063102

    [15]
    [16]
    [17]

    Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J, Sopanen M 2011 J. Appl. Phys. 109 08310

    [18]
    [19]

    Liu Z Q 2012 Appl. Phys. Lett. 101 261106

    [20]
    [21]

    Belabbes A, de Carvalho L C, Schleife A, Bechstedt F 2011 Phys. Rev. B 84 125108

    [22]

    Lee C W, Peter A J 2011 Chin. Phys. B 20 077104

    [23]
    [24]
    [25]

    Wang F, Ji Z W, Wang Q, Wang, X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525

    [26]
    [27]

    Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101

    [28]
    [29]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502

    [30]
    [31]

    Wang H, Farias G A, Freire V N 1999 Phys. Rev. B 60 5705

    [32]

    Zhang J F, Wang C, Zhang J C 2006 Chin. Phys. 15 1060

    [33]
    [34]

    Hylton N P, Dawson P, Kappers M J, Aleese C M, Humphreys C J 2007 Phys. Rev. B 76 205403

    [35]
    [36]
    [37]

    Zhang L 2006 Superlattice. Microst. 40 144

    [38]

    Graham D M, Dawson P, Godfrey M J 2006 Appl. Phys. Lett. 89 211901

    [39]
    [40]
    [41]

    Chen D, Guo Y, Wang L 2007 J. Appl. Phys. 101 053712

    [42]

    Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys. Sin. 59 4996 (in Chinese)[朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 59 4996]

    [43]
    [44]
    [45]

    Huang W D, Chen J D, Ren Y J 2012 J. Appl. Phys. 112 053704

    [46]
    [47]

    Funato M, Matsuda K, Banal R G, Ishii R, Kawakami Y 2013 Phys. Rev. B 87 041306

    [48]

    Xia H, Feng Y, Patterson R, Jia X, Shrestha S, Conibeer G 2013 J. Appl. Phys. 113 164304

    [49]
    [50]
    [51]

    Chen S J, Wang G H 2013 J. Appl. Phys. 113 023515

    [52]

    Pozina G, Hemmingsson C, Amano H, Monear B 2013 Appl. Phys. Lett. 102 082110

    [53]
    [54]
    [55]

    Dong L, Mantese J V, Avrutin V, zgr U, Morko H, Alpay S P 2013 J. Appl. Phys. 114 043715

    [56]
    [57]

    Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115

    [58]
    [59]

    Park S H, Moon Y T 2013 J. Appl. Phys. 114 083107

    [60]

    Liang M M, Weng G E, Zhang J Y, Cai X M, L X Q, Ying L Y, Zhang B P 2014 Chin. Phys. B 23 054211

    [61]
    [62]

    Lee B C, Kim K W, Stroscio M A, Dutta M 1998 Phys. Rev. B 58 4860

    [63]
    [64]

    Komirenko S M, Kim K W, Stroscio M A, Dutta M 1999 Phys. Rev. B 59 5013

    [65]
    [66]

    Shi J J 2003 Phys. Rev. B 68 165335

    [67]
    [68]

    Shi J J, Chu X L, Goldys E M 2004 Phys. Rev. B 70 115318

    [69]
    [70]
    [71]

    Li L, Liu D, Shi J J 2005 Eur. Phys. J. B 44 401

    [72]

    Bernardini F, Fiorentini V 1999 Phys. Stat. Sol. B 216 391

    [73]
    [74]

    Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Di Carlo A, Sala F D, Lugli P 2000 Phys. Rev. B 61 2711

    [75]
    [76]
    [77]

    Shi J J, Gan Z Z 2003 J. Appl. Phys. 94 407

    [78]
    [79]

    Zhao F Q, Gong J 2007 Chin. Phys. Lett. 24 1327

    [80]

    Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese)[赵凤岐, 周炳卿 2007 56 4856]

    [81]
    [82]
    [83]

    Zhao F Q, Zhang M, Wurentuya 2011 J. Phys. Soc. Japan 80 94713

    [84]

    Zhao F Q, Yong M 2012 Chin. Phys B 21 107103

    [85]
    [86]
    [87]

    Liu D, Shi J J, Butcher K S A 2006 Superlattices and Microstructures 40 180

    [88]
    [89]

    Zhang L, Shi J J 2007 Commun. Theor. Phys. 47 349

    [90]
    [91]

    Cai J, Shi J J 2008 Solid State Commun. 145 235

    [92]
    [93]

    Zhu Y H, Shi J J 2009 Physica E 41 746

    [94]
    [95]

    Vurgaftman I, Melyer J R 2003 J. Appl. Phys. 94 3675

    [96]
    [97]

    Graham D M, Soltani-Vala A, Dawsos P, Godfrey M J, Smeeton T M, Barnard J S, Kappers M J, Humphreys C J, Thrush E J 2005 J. Appl. Phys. 97 103508

    [98]
    [99]

    Liang X X, Wang X 1991 Phys. Rev. B. 43 5155

    [100]
    [101]

    Liang X X, Yang J S 1996 Solid State Commun. 100 629

    [102]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [103]
    [104]

    Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H, Suski T 1992 Phys. Rev. B 45 13307

    [105]
    [106]

    Azuhata T, Sota T, Suzuki K, Nakamura S 1995 J. Phys.: Condens. Matter 7 L129

    [107]
    [108]

    Misek J, Srobar F 1979 Electrotech. Cas. 30 690

    [109]
    [110]

    Harima H 2002 J. Phys.: Condens. Matter 14 R967

    [111]
    [112]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [113]
    [114]
    [115]

    Mora-Ramos M E 2001 Phys. Stat. Sol. 223 843

  • [1]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [2]
    [3]

    Shan W, Walukiewicz W, Yu K M, Ager J W, Haller E E, Geisz J F, Friedman D J, Olson J M, Kurtz S R, Nauka C 2000 Phys. Rev. B 62 4211

    [4]

    Karch K, Wagner J M, Bechstedt F 1998 Phys. Rev. B 57 7043

    [5]
    [6]
    [7]

    Akasaki I, Amano H Jan. J. Appl. Phys. Part I 36 (9A) 5393

    [8]

    Nakamura S 1997 Solid. State. Commun. 102 237

    [9]
    [10]

    Lee B C, Kim K V, StroscioM A, Dutta M 1997 Phys. Rev. B 56 997

    [11]
    [12]

    Malyutenko V K, Bolgov S S, Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110

    [13]
    [14]

    Lee W, Kim M H, Zhu D 2010 J. Appl. Phys. 107 063102

    [15]
    [16]
    [17]

    Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J, Sopanen M 2011 J. Appl. Phys. 109 08310

    [18]
    [19]

    Liu Z Q 2012 Appl. Phys. Lett. 101 261106

    [20]
    [21]

    Belabbes A, de Carvalho L C, Schleife A, Bechstedt F 2011 Phys. Rev. B 84 125108

    [22]

    Lee C W, Peter A J 2011 Chin. Phys. B 20 077104

    [23]
    [24]
    [25]

    Wang F, Ji Z W, Wang Q, Wang, X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525

    [26]
    [27]

    Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101

    [28]
    [29]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502

    [30]
    [31]

    Wang H, Farias G A, Freire V N 1999 Phys. Rev. B 60 5705

    [32]

    Zhang J F, Wang C, Zhang J C 2006 Chin. Phys. 15 1060

    [33]
    [34]

    Hylton N P, Dawson P, Kappers M J, Aleese C M, Humphreys C J 2007 Phys. Rev. B 76 205403

    [35]
    [36]
    [37]

    Zhang L 2006 Superlattice. Microst. 40 144

    [38]

    Graham D M, Dawson P, Godfrey M J 2006 Appl. Phys. Lett. 89 211901

    [39]
    [40]
    [41]

    Chen D, Guo Y, Wang L 2007 J. Appl. Phys. 101 053712

    [42]

    Zhu L H, Cai J F, Li X Y, Deng B, Liu B L 2010 Acta Phys. Sin. 59 4996 (in Chinese)[朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林 2010 59 4996]

    [43]
    [44]
    [45]

    Huang W D, Chen J D, Ren Y J 2012 J. Appl. Phys. 112 053704

    [46]
    [47]

    Funato M, Matsuda K, Banal R G, Ishii R, Kawakami Y 2013 Phys. Rev. B 87 041306

    [48]

    Xia H, Feng Y, Patterson R, Jia X, Shrestha S, Conibeer G 2013 J. Appl. Phys. 113 164304

    [49]
    [50]
    [51]

    Chen S J, Wang G H 2013 J. Appl. Phys. 113 023515

    [52]

    Pozina G, Hemmingsson C, Amano H, Monear B 2013 Appl. Phys. Lett. 102 082110

    [53]
    [54]
    [55]

    Dong L, Mantese J V, Avrutin V, zgr U, Morko H, Alpay S P 2013 J. Appl. Phys. 114 043715

    [56]
    [57]

    Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115

    [58]
    [59]

    Park S H, Moon Y T 2013 J. Appl. Phys. 114 083107

    [60]

    Liang M M, Weng G E, Zhang J Y, Cai X M, L X Q, Ying L Y, Zhang B P 2014 Chin. Phys. B 23 054211

    [61]
    [62]

    Lee B C, Kim K W, Stroscio M A, Dutta M 1998 Phys. Rev. B 58 4860

    [63]
    [64]

    Komirenko S M, Kim K W, Stroscio M A, Dutta M 1999 Phys. Rev. B 59 5013

    [65]
    [66]

    Shi J J 2003 Phys. Rev. B 68 165335

    [67]
    [68]

    Shi J J, Chu X L, Goldys E M 2004 Phys. Rev. B 70 115318

    [69]
    [70]
    [71]

    Li L, Liu D, Shi J J 2005 Eur. Phys. J. B 44 401

    [72]

    Bernardini F, Fiorentini V 1999 Phys. Stat. Sol. B 216 391

    [73]
    [74]

    Cingolani R, Botchkarev A, Tang H, Morkoc H, Traetta G, Coli G, Lomascolo M, Di Carlo A, Sala F D, Lugli P 2000 Phys. Rev. B 61 2711

    [75]
    [76]
    [77]

    Shi J J, Gan Z Z 2003 J. Appl. Phys. 94 407

    [78]
    [79]

    Zhao F Q, Gong J 2007 Chin. Phys. Lett. 24 1327

    [80]

    Zhao F Q, Zhou B Q 2007 Acta Phys. Sin. 56 4856 (in Chinese)[赵凤岐, 周炳卿 2007 56 4856]

    [81]
    [82]
    [83]

    Zhao F Q, Zhang M, Wurentuya 2011 J. Phys. Soc. Japan 80 94713

    [84]

    Zhao F Q, Yong M 2012 Chin. Phys B 21 107103

    [85]
    [86]
    [87]

    Liu D, Shi J J, Butcher K S A 2006 Superlattices and Microstructures 40 180

    [88]
    [89]

    Zhang L, Shi J J 2007 Commun. Theor. Phys. 47 349

    [90]
    [91]

    Cai J, Shi J J 2008 Solid State Commun. 145 235

    [92]
    [93]

    Zhu Y H, Shi J J 2009 Physica E 41 746

    [94]
    [95]

    Vurgaftman I, Melyer J R 2003 J. Appl. Phys. 94 3675

    [96]
    [97]

    Graham D M, Soltani-Vala A, Dawsos P, Godfrey M J, Smeeton T M, Barnard J S, Kappers M J, Humphreys C J, Thrush E J 2005 J. Appl. Phys. 97 103508

    [98]
    [99]

    Liang X X, Wang X 1991 Phys. Rev. B. 43 5155

    [100]
    [101]

    Liang X X, Yang J S 1996 Solid State Commun. 100 629

    [102]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [103]
    [104]

    Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H, Suski T 1992 Phys. Rev. B 45 13307

    [105]
    [106]

    Azuhata T, Sota T, Suzuki K, Nakamura S 1995 J. Phys.: Condens. Matter 7 L129

    [107]
    [108]

    Misek J, Srobar F 1979 Electrotech. Cas. 30 690

    [109]
    [110]

    Harima H 2002 J. Phys.: Condens. Matter 14 R967

    [111]
    [112]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [113]
    [114]
    [115]

    Mora-Ramos M E 2001 Phys. Stat. Sol. 223 843

  • [1] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] Li Ya-Sha, Liu Shi-Chong, Liu Qing-Dong, Xia Yu, Hu Huo-Ran, Li Guang-Zhu. Electrical properties of ZnO/${\boldsymbol{\beta}} $-Bi2O3 interfaces featuring aggregation defect under external electric fields. Acta Physica Sinica, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [3] Research on electrical properties of ZnO/β-Bi2O3 interfaces featuring aggregation defect within external electric fields. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210635
    [4] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [5] Wu Na, Yang Jiao, Xiao Fen, Cai Ling-Cang, Tian Chun-Ling. Equation of state of solid krypton from correlated quantum chemistry calculations. Acta Physica Sinica, 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [6] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [7] Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells. Acta Physica Sinica, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [8] Su An, Gao Ying-Jun. Light propagation characteristics of one-dimensional photonic crystal with double-barrier quantum well. Acta Physica Sinica, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [9] Chen Ai-Xi, Chen Yuan, Deng Li, Kuang Yun-Feng. Spontaneously generated coherence induced transparency in an asymmetric semiconductor quantum well. Acta Physica Sinica, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [10] Meng Zhen-Hua, Li Jun-Bin, Guo Yong-Quan, Wang Yi. Correlations between the valence electron structure and melt pointing and cohesive energies of rare earth metals. Acta Physica Sinica, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [11] Zhang Yun-Yan, Fan Guan-Han. Theoretical study of the effect of changes in the number of quantum wells of dual-wavelength LED. Acta Physica Sinica, 2011, 60(7): 078504. doi: 10.7498/aps.60.078504
    [12] Zhang Yi-Jun, Niu Jun, Zhao Jing, Zou Ji-Jun, Chang Ben-Kang. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes. Acta Physica Sinica, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [13] Jiang Wen-Long, Meng Zhao-Hui, Cong Lin, Wang Jin, Wang Li-Zhong, Han Qiang, Meng Fan-Chao, Gao Yong-Hui. The role of magnetic fields on the efficiency of OLED of double quantum well structures. Acta Physica Sinica, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [14] Eerdunchaolu. Influences of temperature and polaron effect on the ground state of quasi-two-dimensional strong-coupling exciton. Acta Physica Sinica, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [15] Huang Shu-Wen, Liu Tao, Fan Yun-Xia, Wang Ke-Lin. Exact diagonalization solution and coherent state variational method of the coupling system of carrier and ferromagnetic material. Acta Physica Sinica, 2007, 56(1): 491-499. doi: 10.7498/aps.56.491
    [16] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [17] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [18] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [19] Shao Jia-Ping, Hu Hui, Guo Wen-Ping, Wang Lai, Luo Yi, Sun Chang-Zheng, Hao Zhi-Biao. Study on electroluminescence spectra of InxGa1-xN/GaN-MQWs materials with high indium contents. Acta Physica Sinica, 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
    [20] Chen Gui-Bin, Lu Wei, Liao Zhong-Lin, Li Zhi-Feng, Chai Wei-Ying, Shen Xue-Chu, Chen Chang-Ming, Zhu De-Zhang, Hu Jun, Li Ming-Qian. . Acta Physica Sinica, 2002, 51(3): 659-662. doi: 10.7498/aps.51.659
Metrics
  • Abstract views:  5536
  • PDF Downloads:  492
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2014
  • Accepted Date:  14 May 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map