搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能

李亚莎 刘世冲 刘清东 夏宇 胡豁然 李光竹

引用本文:
Citation:

外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能

李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹

Electrical properties of ZnO/${\boldsymbol{\beta}} $-Bi2O3 interfaces featuring aggregation defect under external electric fields

Li Ya-Sha, Liu Shi-Chong, Liu Qing-Dong, Xia Yu, Hu Huo-Ran, Li Guang-Zhu
PDF
HTML
导出引用
  • 电力设备的安全运行很大程度上取决于避雷器的过电压保护水平, ZnO压敏电阻因具有优异的非线性伏安特性而广泛应用于电力系统避雷器的核心元件. 为了从微观结构上了解ZnO压敏电阻的电学性能, 本文采用基于密度泛函理论的第一性原理对含有锌填隙Zni与氧空位Vo缺陷的ZnO/β-Bi2O3界面进行分析计算, 并研究其在不同外电场下的相关电学性质. 计算结果表明, 弛豫后氧空位Vo缺陷发生迁移. 在外电场的作用下, 填隙Zn离子向界面处偏移, 界面能在电场强度超过0.1 V/Å后快速升高, 界面之间的相互作用力变大, 层间距减小, 体系导电性迅速增强. 采用差分电荷密度、功函数以及Bader电荷分析方法, 计算出了界面处的势垒高度, 证实了内建电场是ZnO压敏电阻具有非线性伏安特性的重要原因. 采用态密度分析的方法, 分析了原子轨道能级、陷阱能级以及能隙等微观参数对ZnO压敏电阻宏观导电性能的影响. 本工作通过调控外电场的强度对含有缔合缺陷的ZnO/β-Bi2O3界面不同电气参数进行分析, 为理解和调控ZnO压敏电阻的电学特性提供了新的思路.
    The safe operation of power equipment largely depends on the overvoltage protection level of the arrester. The ZnO varistors are widely used as the core components of the arresters in power systems because of the excellent nonlinear volt-ampere characteristics. In order to study the electrical properties of ZnO varistors under different external electric fields from the microstructure, the method of first-principles based on density functional theory (DFT) is used, and structure of ZnO/β-Bi2O3 interface containing zinc interstitial (Zni) and oxygen vacancy (Vo) defects is built. The results show that the Vo defect migrates after full relaxation. The Zni shifts to the interface under an external electric field. The interface energy increases rapidly after the electric field intensity has exceeded 0.1 V/Å, which means that the interaction force between the interfaces becomes larger, the distance between ZnO and β-Bi2O3 layers decreases, and the conductivity increases rapidly. The differential charge density, work function and Bader charge analysis method are used to calculate the barrier height at the interface, which proves that the built-in electric field is an important cause ingredient responsible for the non-linear volt-ampere characteristics of ZnO varistors. The effects of atomic orbital energy level, trap energy level and energy gap on the macroscopic conductivity of ZnO varistors are analyzed by using the method of density of states analysis. In this work are analyzed the different electrical parameters of the ZnO/β-Bi2O3 interface with aggregation defects by adjusting the intensity of the external electric field, and a new idea is provided for learning the electrical characteristics of ZnO varistors.
      通信作者: 李亚莎, liyasha@ctgu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51577105)资助的课题
      Corresponding author: Li Ya-Sha, liyasha@ctgu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105)
    [1]

    李鹏, 李金忠, 崔博源, 董勤晓, 时卫东, 赵志刚 2016 高电压技术 42 1068Google Scholar

    Li P, Li J Z, Cui B Y, Dong Q X, Shi W D, Zhao Z G 2016 High Voltage Eng. 42 1068Google Scholar

    [2]

    韩先才, 孙昕, 陈海波, 邱宁, 吕铎, 王宁华, 王晓宁, 张甲雷 2020 中国电机工程学报 40 4371Google Scholar

    Han X C, Sun X, Chen H B, Qiu N, Lv D, Wang N H, Zhang J L 2020 Chin. Soc. Elec. Eng. 40 4371Google Scholar

    [3]

    陈家宏, 赵淳, 谷山强, 向念文, 王宇, 雷梦飞 2016 高电压技术 42 3361Google Scholar

    Chen J H, Zhao C, Gu S Q, Xiang N W, Wang Y, Lei M F 2016 High Voltage Eng. 42 3361Google Scholar

    [4]

    何金良, 刘俊, 胡军, 龙望成 2011 高电压技术 37 634Google Scholar

    He J L, Liu J, Hu J, Long W C 2011 High Voltage Eng. 37 634Google Scholar

    [5]

    Finnis M W 1996 Phys. Condens. Matter 8 5811Google Scholar

    [6]

    刘建科, 陈永佳, 崔永宏, 韩晨, 张诚, 范亚红, 梁楚轩 2016 硅酸盐学报 44 1736Google Scholar

    Liu J K, Chen Y J, Cui Y H, Han C, Zhang C, Fan Y H, Liang C X 2016 Chin Ceram Soc. 44 1736Google Scholar

    [7]

    Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983Google Scholar

    [8]

    Huang W G, Cai J, Hu J, Zhu J F, Yang F, Bao X 2021 Chin. J. Catal. 42 971Google Scholar

    [9]

    孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377Google Scholar

    Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377Google Scholar

    [10]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [11]

    Skidan B S, Maung Maung M’int 2007 Glass Ceram. 64 31Google Scholar

    [12]

    孟鹏飞, 刘政, 曹伟, 杜传报, 周凯, 胡军 2021 中国电机工程学报 41 1588Google Scholar

    Meng P F, Liu Z, Cao W, Du C B, Zhou K, Hu j 2021 Chin. Soc. Elec. Eng. 41 1588Google Scholar

    [13]

    赵学童, 李建英, 李欢, 李盛涛 2012 61 147Google Scholar

    Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 147Google Scholar

    [14]

    Onreabroy W, Sirikulrat N, Brown A P, Hammond C, Milne S J 2006 Solid State Ionics 177 411Google Scholar

    [15]

    徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2001 中国科学(A辑) 04 358Google Scholar

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2001 Sci. China, Ser. A Math. 04 358Google Scholar

    [16]

    徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2002 红外与毫米波学报 S1 91

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2002 J. Infrared Millimeter Waves S1 91 (in Chinese)

    [17]

    李亚莎, 黄太焕, 谢云龙, 徐程, 刘国成 2019 原子与分子 36 1003Google Scholar

    Li Y S, Huang T H, Xu C, Liu G C 2019 J. At. Mol. Phys. 36 1003Google Scholar

    [18]

    成鹏飞, 李盛涛, 李建英 2010 59 560Google Scholar

    Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560Google Scholar

    [19]

    Li P, Chen Z H, Yao P, Zhang F J, Wang J W, Song Y, Zuo X 2019 Appl. Surf. Sci. 483 231Google Scholar

    [20]

    马昌敏, 刘廷禹, 常秋香, 罗国胤 2016 高等学校化学学报 37 932Google Scholar

    Ma C M, Liu T Y, Chang Q X, Luo G Y 2016 Chem. J. Chin. Univ. 37 932Google Scholar

    [21]

    Eda K 1982 Materials Research Society Symposia Proceedings, Grain Boundaries in Semiconductors 05 381

    [22]

    张宁 2018 硕士学位论文 (贵州: 贵州大学)

    Zhang N 2018 M. S. Thesis (Guizhou: Guizhou University) (in Chinese)

    [23]

    Slavko Bernik, Cheng L H, Matejka Podlogar, Li G R 2018 Ceramics-Silikáty 62 8Google Scholar

    [24]

    Gupta T K, Carlson W G 1982 Appl. Phys. 53 7401Google Scholar

    [25]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys. -Chem. Sin. 28 1Google Scholar

    [26]

    王倩, 屠幼萍, 丁立健, 琚泽立 2011 中国科学: 技术科学 41 1128Google Scholar

    Wang Q, Tu Y P, Ding L J, Ju Z L 2011 Sci. Sin. (Technologica) 41 1128Google Scholar

    [27]

    Cheng C L, He J L, Hu J 2012 Appl. Phys. Lett. 101 173508Google Scholar

    [28]

    张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 69 157302Google Scholar

    Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar

    [29]

    成鹏飞, 李盛涛, 焦兴六 2006 55 4253Google Scholar

    Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253Google Scholar

    [30]

    Kang J, Wu F M, Li J B 2012 J. Phys. Condens. Matter 24 165301Google Scholar

    [31]

    Francis Opoku, Penny Poomani Govender 2019 Mater. Chem. Phys. 224 107Google Scholar

  • 图 1  含有缔合缺陷的ZnO(002)/β-Bi2O3(210)界面初始模型

    Fig. 1.  Initial model of ZnO(002)/β-Bi2O3(210) interface with aggregation defects.

    图 2  界面层间距收敛测试数据

    Fig. 2.  Convergence of interfacial layer spacing test data.

    图 3  含有缔合缺陷的ZnO(002)/β-Bi2O3(210)界面优化模型

    Fig. 3.  Optimization model of ZnO(002)/β-Bi2O3(210) interface with aggregation defects.

    图 4  ZnO/β-Bi2O3界面能

    Fig. 4.  Interface energy of ZnO/β-Bi2O3.

    图 5  ZnO/β-Bi2O3体系HOMO与LUMO能量

    Fig. 5.  HOMO and LUMO energy of ZnO/β-Bi2O3.

    图 6  差分电荷密度 (a) 电场强度为0 V/Å; (b) 电场强度为0.1 V/Å; (c) 电场强度为0.25 V/Å

    Fig. 6.  Differential charge density: (a) Electric field strength is 0 V/Å; (b) electric field strength is 0.1 V/Å; (c) electric field strength is 0.25 V/Å.

    图 7  界面的肖特基势垒高度

    Fig. 7.  Schottky barrier height of the interface.

    图 8  沿着z轴方向的平均功函数

    Fig. 8.  Average work function along the z axis.

    图 9  界面的态密度和分波态密度 (a) 电场强度为0 V/Å; (b)电场强度为0.1 V/Å; (c)电场强度为0.25 V/Å

    Fig. 9.  Interface density of states and partial density of states: (a) Electric field strength is 0 V/Å; (b) electric field strength is 0.1 V/Å; (c) electric field strength is 0.25 V/Å.

    表 1  界面结构晶格失配度

    Table 1.  Interfacial structure lattice mismatch.

    UV
    ZnO(002)5.62816.246
    Bi2O3(210)5.63017.307
    晶格失配度/%0.018 3.160
    下载: 导出CSV

    表 2  不同电场下Bader电荷分析

    Table 2.  Bader charge analysis with different electric fields.

    LayerSpeciesElectric field/(V·Å–1Total/eCharge/e
    ZnOZn0339.84532.155
    0.10340.95931.041
    0.25340.80531.195
    O0211.328–31.328
    0.10209.399–29.399
    0.25210.394–30.394
    β–Bi2O3Bi0158.34221.658
    0.10160.33719.663
    0.25159.09820.902
    O0136.486–22.486
    0.10135.304–21.304
    0.25135.703–21.703
    下载: 导出CSV
    Baidu
  • [1]

    李鹏, 李金忠, 崔博源, 董勤晓, 时卫东, 赵志刚 2016 高电压技术 42 1068Google Scholar

    Li P, Li J Z, Cui B Y, Dong Q X, Shi W D, Zhao Z G 2016 High Voltage Eng. 42 1068Google Scholar

    [2]

    韩先才, 孙昕, 陈海波, 邱宁, 吕铎, 王宁华, 王晓宁, 张甲雷 2020 中国电机工程学报 40 4371Google Scholar

    Han X C, Sun X, Chen H B, Qiu N, Lv D, Wang N H, Zhang J L 2020 Chin. Soc. Elec. Eng. 40 4371Google Scholar

    [3]

    陈家宏, 赵淳, 谷山强, 向念文, 王宇, 雷梦飞 2016 高电压技术 42 3361Google Scholar

    Chen J H, Zhao C, Gu S Q, Xiang N W, Wang Y, Lei M F 2016 High Voltage Eng. 42 3361Google Scholar

    [4]

    何金良, 刘俊, 胡军, 龙望成 2011 高电压技术 37 634Google Scholar

    He J L, Liu J, Hu J, Long W C 2011 High Voltage Eng. 37 634Google Scholar

    [5]

    Finnis M W 1996 Phys. Condens. Matter 8 5811Google Scholar

    [6]

    刘建科, 陈永佳, 崔永宏, 韩晨, 张诚, 范亚红, 梁楚轩 2016 硅酸盐学报 44 1736Google Scholar

    Liu J K, Chen Y J, Cui Y H, Han C, Zhang C, Fan Y H, Liang C X 2016 Chin Ceram Soc. 44 1736Google Scholar

    [7]

    Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983Google Scholar

    [8]

    Huang W G, Cai J, Hu J, Zhu J F, Yang F, Bao X 2021 Chin. J. Catal. 42 971Google Scholar

    [9]

    孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377Google Scholar

    Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377Google Scholar

    [10]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [11]

    Skidan B S, Maung Maung M’int 2007 Glass Ceram. 64 31Google Scholar

    [12]

    孟鹏飞, 刘政, 曹伟, 杜传报, 周凯, 胡军 2021 中国电机工程学报 41 1588Google Scholar

    Meng P F, Liu Z, Cao W, Du C B, Zhou K, Hu j 2021 Chin. Soc. Elec. Eng. 41 1588Google Scholar

    [13]

    赵学童, 李建英, 李欢, 李盛涛 2012 61 147Google Scholar

    Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 147Google Scholar

    [14]

    Onreabroy W, Sirikulrat N, Brown A P, Hammond C, Milne S J 2006 Solid State Ionics 177 411Google Scholar

    [15]

    徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2001 中国科学(A辑) 04 358Google Scholar

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2001 Sci. China, Ser. A Math. 04 358Google Scholar

    [16]

    徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2002 红外与毫米波学报 S1 91

    Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2002 J. Infrared Millimeter Waves S1 91 (in Chinese)

    [17]

    李亚莎, 黄太焕, 谢云龙, 徐程, 刘国成 2019 原子与分子 36 1003Google Scholar

    Li Y S, Huang T H, Xu C, Liu G C 2019 J. At. Mol. Phys. 36 1003Google Scholar

    [18]

    成鹏飞, 李盛涛, 李建英 2010 59 560Google Scholar

    Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560Google Scholar

    [19]

    Li P, Chen Z H, Yao P, Zhang F J, Wang J W, Song Y, Zuo X 2019 Appl. Surf. Sci. 483 231Google Scholar

    [20]

    马昌敏, 刘廷禹, 常秋香, 罗国胤 2016 高等学校化学学报 37 932Google Scholar

    Ma C M, Liu T Y, Chang Q X, Luo G Y 2016 Chem. J. Chin. Univ. 37 932Google Scholar

    [21]

    Eda K 1982 Materials Research Society Symposia Proceedings, Grain Boundaries in Semiconductors 05 381

    [22]

    张宁 2018 硕士学位论文 (贵州: 贵州大学)

    Zhang N 2018 M. S. Thesis (Guizhou: Guizhou University) (in Chinese)

    [23]

    Slavko Bernik, Cheng L H, Matejka Podlogar, Li G R 2018 Ceramics-Silikáty 62 8Google Scholar

    [24]

    Gupta T K, Carlson W G 1982 Appl. Phys. 53 7401Google Scholar

    [25]

    卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar

    Lu T, Chen F W 2012 Acta Phys. -Chem. Sin. 28 1Google Scholar

    [26]

    王倩, 屠幼萍, 丁立健, 琚泽立 2011 中国科学: 技术科学 41 1128Google Scholar

    Wang Q, Tu Y P, Ding L J, Ju Z L 2011 Sci. Sin. (Technologica) 41 1128Google Scholar

    [27]

    Cheng C L, He J L, Hu J 2012 Appl. Phys. Lett. 101 173508Google Scholar

    [28]

    张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 69 157302Google Scholar

    Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar

    [29]

    成鹏飞, 李盛涛, 焦兴六 2006 55 4253Google Scholar

    Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253Google Scholar

    [30]

    Kang J, Wu F M, Li J B 2012 J. Phys. Condens. Matter 24 165301Google Scholar

    [31]

    Francis Opoku, Penny Poomani Govender 2019 Mater. Chem. Phys. 224 107Google Scholar

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能.  , 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 刘冬季, 马圆圆, 何金柏, 王昊, 周远翔, 孙冠岳, 赵洪峰. 采用Ga掺杂的具有低泄漏电流和高稳定性避雷器ZnO压敏电阻.  , 2023, 72(6): 067301. doi: 10.7498/aps.72.20222233
    [3] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性.  , 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究.  , 2021, (): . doi: 10.7498/aps.70.20210635
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析.  , 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究.  , 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [7] 唐振鹏, 陈尾虹, 冉梦. 基于上证指数高频数据的中国资本市场微观特性研究.  , 2017, 66(12): 120203. doi: 10.7498/aps.66.120203
    [8] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理.  , 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [9] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响.  , 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [10] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响.  , 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
    [11] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析.  , 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [12] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性.  , 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [13] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响.  , 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [14] 蔡志鹏, 杨文正, 唐伟东, 侯洵. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析.  , 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [15] 张培健, 孟洋, 刘紫玉, 潘新宇, 梁学锦, 陈东敏, 赵宏武. 缺陷分布对Ag-SiO2薄膜电阻翻转效应的影响.  , 2012, 61(10): 107703. doi: 10.7498/aps.61.107703
    [16] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [17] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析.  , 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制.  , 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响.  , 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
计量
  • 文章访问数:  4746
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-05-06
  • 上网日期:  2022-01-01
  • 刊出日期:  2022-01-20

/

返回文章
返回
Baidu
map