-
Microchip laser can output two orthogonal frequency splitting modes due to its own internal residual stress. In this paper it is found that the frequency difference of microchip laser is modulated by laser feedback. The modulation is a sinusoid-like curve whose center is the original frequency difference and period is half-wavelength. The amplitude of the modulation curve is proportional to feedback level. But when the feedback is too strong, so that the polarization switching occurs and only one polarization exists sometimes. In a range of external cavity, the amplitude of the modulation curve is also proportional to original frequency difference. The theoretical analysis and simulation based on the composite laser cavity theory and self-consistent theory are in good agreement with the experimental results. The potential applications of this phenomenon in precision measurement are discussed.
-
Keywords:
- optical feedback /
- microchip laser /
- frequency difference modulation /
- frequency splitting
[1] Wang W M, Boyle W J O, Grattan K T V 1993 Appl. Opt. 32 1551
[2] Takiguchi Y, Ohyagi K 2003 Opt. Lett. 28 319
[3] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[4] Lenstra D, Verbeek B H, Boef A J 1985 IEEE J. Quantum Electron. 21 674
[5] Tand Y D, Zhang S L 2007 Acta Phys. Sin. 56 2124 (in Chinese)[谈宜东, 张书练 2007 56 2124]
[6] Alvarado T, Julius J 2005 Appl. Opt. 44 7287
[7] Mao W, Zhang S L, Zhang L Q, Zhu J, Li Y 2006 Acta Phys. Sin. 55 4704 (in Chinese) [毛威, 张书练, 张连清, 朱钧, 李岩 2006 55 4704]
[8] Wan X J, Li D, Zhang S L 2007 Opt. Lett. 32 367
[9] Okamoto S, Takeda H, Kannari F 1995 Rev. Sci. Instrum. 66 3116
[10] Ryoji K, Yusuke A, Kenju O 1999 IEEE Photon. Technol. Lett. 11 706
[11] Kenju O, Kazutaka A, Ko J Y 2002 Opt. Lett. 27 1339
[12] Giuliani G, Pietra S B, Donati S 2003 Meas. Sci. Technol. 14 24
[13] Wang M, Lai G 2004 Opt. Commun. 238 237
[14] Arnaud W, Eric L, Olivier H 2006 Opt. Lett. 31 3031
[15] Tan Y D, Xu C X, Zhang S, Zhang S L 2013 Laser Phys. Lett. 10 25001
[16] Holzapfel W, Seffgast W 1989 Appl. Phys. B 49 169
[17] Sciamanna M, Panajotov K, Thienpont H 2003 Opt. Lett. 28 1543
[18] Fei L G, Zhang S L, Wan X J 2004 Chin. Phys. Lett. 21 1944
[19] Ren Z, Tan Y D, Wan X J, Zhang S L 2010 Appl. Phys. B 99 469
[20] Ren C, Tan Y D, Zhang S L 2012 Chin. Phys. B 19 024206
[21] Wang W M, Gratten K T V, Palmer A W, Boyle W J O 1994 IEEE J. Lightwave Technol. 12 1577
[22] Brown N 1981 Appl. Opt. 20 3711
[23] Toshihiko Y, Yukio K 1999 Appl. Opt. 38 3266
-
[1] Wang W M, Boyle W J O, Grattan K T V 1993 Appl. Opt. 32 1551
[2] Takiguchi Y, Ohyagi K 2003 Opt. Lett. 28 319
[3] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[4] Lenstra D, Verbeek B H, Boef A J 1985 IEEE J. Quantum Electron. 21 674
[5] Tand Y D, Zhang S L 2007 Acta Phys. Sin. 56 2124 (in Chinese)[谈宜东, 张书练 2007 56 2124]
[6] Alvarado T, Julius J 2005 Appl. Opt. 44 7287
[7] Mao W, Zhang S L, Zhang L Q, Zhu J, Li Y 2006 Acta Phys. Sin. 55 4704 (in Chinese) [毛威, 张书练, 张连清, 朱钧, 李岩 2006 55 4704]
[8] Wan X J, Li D, Zhang S L 2007 Opt. Lett. 32 367
[9] Okamoto S, Takeda H, Kannari F 1995 Rev. Sci. Instrum. 66 3116
[10] Ryoji K, Yusuke A, Kenju O 1999 IEEE Photon. Technol. Lett. 11 706
[11] Kenju O, Kazutaka A, Ko J Y 2002 Opt. Lett. 27 1339
[12] Giuliani G, Pietra S B, Donati S 2003 Meas. Sci. Technol. 14 24
[13] Wang M, Lai G 2004 Opt. Commun. 238 237
[14] Arnaud W, Eric L, Olivier H 2006 Opt. Lett. 31 3031
[15] Tan Y D, Xu C X, Zhang S, Zhang S L 2013 Laser Phys. Lett. 10 25001
[16] Holzapfel W, Seffgast W 1989 Appl. Phys. B 49 169
[17] Sciamanna M, Panajotov K, Thienpont H 2003 Opt. Lett. 28 1543
[18] Fei L G, Zhang S L, Wan X J 2004 Chin. Phys. Lett. 21 1944
[19] Ren Z, Tan Y D, Wan X J, Zhang S L 2010 Appl. Phys. B 99 469
[20] Ren C, Tan Y D, Zhang S L 2012 Chin. Phys. B 19 024206
[21] Wang W M, Gratten K T V, Palmer A W, Boyle W J O 1994 IEEE J. Lightwave Technol. 12 1577
[22] Brown N 1981 Appl. Opt. 20 3711
[23] Toshihiko Y, Yukio K 1999 Appl. Opt. 38 3266
Catalog
Metrics
- Abstract views: 5729
- PDF Downloads: 349
- Cited By: 0