-
玻璃材料的内应力关系及所在系统的稳定性、安全性和可靠性,是精密加工领域的重要问题.基于双折射外腔激光回馈效应的应力测量技术以其先进新颖的测量原理受到普遍关注.传统理论普遍认为双折射回馈系统中激光器的输出相位仅由外腔相位延迟决定,而将测量误差归因于外腔镜的非线性运动.本文结合正交偏振激光原理和三镜腔等效模型,测量了激光器的内腔双折射引起的频差大小,进行了频率调谐回馈实验,并根据结论计算了内腔频差对外腔相位延迟测量结果的影响,发现激光器的输出相位由外腔相位延迟、内腔频差、外腔长度共同决定.本文总结了内腔和外腔各向异性共同作用下激光器正交偏振态的相位特性,补充了激光回馈的物理内容,对于应力-双折射、位移、距离等重要参量的精确测量,都具有重要指导意义.The internal stress of glass material directly affects the processing quality of glass components and the service life of optical components. It is an important factor that relates to the overall system performance, safety, and reliability. Aerospace, precision optical systems, precision machining and other areas generally highly value the stress measurements of glass components. For example, the internal stress in the medium-glass material of precision imaging system will lead to the degradation of optical performance and reduce the image quality; the stress in the glass material used as the gain medium of high-power solid-state lasers not only directly affects the polarization state of the output light, but also shortens the service life of the laser; the stress concentration in the load-bearing glass of aircraft windshields, building glass curtain walls, etc., will cause serious accidents such as popping due to the reduction of glass mechanical properties. Therefore, the high sensitivity and large measurement range of stress detection technology has become a current research hotspot. Stress measurement techniques based on the birefringent external cavity laser feedback effect has received widespread attention due to its advanced and novel measurement principle. It is generally accepted in the traditional theory that the output phase of the laser in a feedback system is only determined by the phase retardation of birefringent element in an external cavity, and the measurement error is induced by the non-linear movement of external mirror. In this paper, the orthogonally polarized laser principle and the three-cavity equivalent model are combined to explain the influence of cavity frequency difference on the output of laser in feedback system. The frequency difference caused by the birefringence of the laser cavity is measured by comparing the intervals between adjacent longitudinal modes, and the frequency tuning feedback experiment is carried out. Theoretical analysis and experimental results show that the output phase of the laser is determined by the phase retardation of the external cavity, the frequency difference of the internal cavity, and the length of the external cavity. This conclusion is also confirmed by the measurement of the standard quarter wave plate. For a feedback system with an internal cavity frequency difference of 5 MHz and external cavity length of 150 mm, the phase difference induced by internal cavity frequency difference is about 0.573. The laser can output a single longitudinal mode below 40 MHz of the internal cavity frequency difference, and the length of the external cavity is generally larger than 150 mm when the actual system is designed, so the phase difference introduced by these two parameters cannot be ignored and must be calibrated. This study summarizes the phase characteristics of the orthogonally polarized laser under the joint of anisotropy feedback cavity, supplements the physical content of the laser feedback, and has great significance for accurate laser measurement of stress-birefringence, displacement, and distance.
-
Keywords:
- cavity frequency difference /
- birefringence /
- feedback /
- phase difference
[1] Findlay S J, Harrison N D 2002 Mater. Today 5 18
[2] Tomozawa M, Lezzi P J, Hepburn R W, Blanchet T A, Cherniak D J 2012 J. Non-Cryst. Solids 358 2650
[3] He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1
[4] Rawer R, Stork W, Spraul C W, Lingenfelder C 2005 J. Cataract Refr. Surg. 31 1618
[5] Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201 (in Chinese) [朱守深, 张书练, 刘维新, 牛海莎 2014 63 064201]
[6] Okoro C, Levine L E, Xu R 2014 IEEE Trans. Electron Dev. 61 2473
[7] Vourna P, Hervoches C, Vrna M 2015 IEEE Trans. Magn. 51 6200104
[8] Chupakhin S, Kashaev N, Huber N 2016 J. Strain Anal. Eng. Des. 51 572
[9] Montalto L, Paone N, Rinaldi D, Scalise L 2015 Opt. Eng. 54 081210
[10] Nagib N N, Bahrawi M S, Ismail L Z, Othman M H, Abdallah A W 2015 Opt. Laser Technol. 69 77
[11] He J S, Zhang M, Zou J J, Pan H Q, Qi W J, Li P 2017 Acta Phys. Sin. 66 216102 (in Chinese) [何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平 2017 66 216102]
[12] Zhu K Y, Guo B, Lu Y Y, et al. 2017 Optica 4 729
[13] Yang S, Zhang S 1988 Opt. Commun. 68 55
[14] Wang W M, Boyle W J O, Granttan K T V, Palmer A 1993 Appl. Opt. 32 1551
[15] Zhang P, Tan Y D, Liu N, et al. 2013 Opt. Lett. 38 4296
[16] Zhang S H, Zhang S L, Sun L Q, et al. 2016 IEEE Photon. Technol. Lett. 28 1593
[17] Tan Y D, Zhang S L, Zhang S, et al. 2013 Sci. Rep. 3 2912
[18] Li J, Tan Y D, Zhang S L 2015 Opt. Lett. 40 3615
[19] Liu W X, Liu M, Zhang S 2008 Appl. Opt. 47 5562
[20] Niu H S, Niu Y X, Liu N, Liu W W, Wang C L 2015 Acta Phys. Sin. 64 084208 (in Chinese) [牛海莎, 牛燕雄, 刘宁, 刘雯雯, 王彩丽 2015 64 084208]
[21] Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 59 5784]
[22] Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205 (in Chinese) [黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 67 064205]
-
[1] Findlay S J, Harrison N D 2002 Mater. Today 5 18
[2] Tomozawa M, Lezzi P J, Hepburn R W, Blanchet T A, Cherniak D J 2012 J. Non-Cryst. Solids 358 2650
[3] He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1
[4] Rawer R, Stork W, Spraul C W, Lingenfelder C 2005 J. Cataract Refr. Surg. 31 1618
[5] Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201 (in Chinese) [朱守深, 张书练, 刘维新, 牛海莎 2014 63 064201]
[6] Okoro C, Levine L E, Xu R 2014 IEEE Trans. Electron Dev. 61 2473
[7] Vourna P, Hervoches C, Vrna M 2015 IEEE Trans. Magn. 51 6200104
[8] Chupakhin S, Kashaev N, Huber N 2016 J. Strain Anal. Eng. Des. 51 572
[9] Montalto L, Paone N, Rinaldi D, Scalise L 2015 Opt. Eng. 54 081210
[10] Nagib N N, Bahrawi M S, Ismail L Z, Othman M H, Abdallah A W 2015 Opt. Laser Technol. 69 77
[11] He J S, Zhang M, Zou J J, Pan H Q, Qi W J, Li P 2017 Acta Phys. Sin. 66 216102 (in Chinese) [何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平 2017 66 216102]
[12] Zhu K Y, Guo B, Lu Y Y, et al. 2017 Optica 4 729
[13] Yang S, Zhang S 1988 Opt. Commun. 68 55
[14] Wang W M, Boyle W J O, Granttan K T V, Palmer A 1993 Appl. Opt. 32 1551
[15] Zhang P, Tan Y D, Liu N, et al. 2013 Opt. Lett. 38 4296
[16] Zhang S H, Zhang S L, Sun L Q, et al. 2016 IEEE Photon. Technol. Lett. 28 1593
[17] Tan Y D, Zhang S L, Zhang S, et al. 2013 Sci. Rep. 3 2912
[18] Li J, Tan Y D, Zhang S L 2015 Opt. Lett. 40 3615
[19] Liu W X, Liu M, Zhang S 2008 Appl. Opt. 47 5562
[20] Niu H S, Niu Y X, Liu N, Liu W W, Wang C L 2015 Acta Phys. Sin. 64 084208 (in Chinese) [牛海莎, 牛燕雄, 刘宁, 刘雯雯, 王彩丽 2015 64 084208]
[21] Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 59 5784]
[22] Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205 (in Chinese) [黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 67 064205]
计量
- 文章访问数: 5746
- PDF下载量: 103
- 被引次数: 0