-
We proposed a chaotic secure communication method, namely the partial series of the chaos system for parameter estimation and the other series for secure communications. Parameter estimation could be obtained from the partial series of chaos system with the chaotic ant swarm optimization algorithm, to understand all of the information of the chaos system. In the process of parameter estimation, the introduced parameter space and ant swarm space transformed into each other through space transformation function. Numerical simulation validated the feasibility of the chaos system partial series parameter estimation and the chaotic secure communication method.
-
Keywords:
- chaotic ant swarm optimization /
- parameter estimation /
- chaotic secure communications /
- numerical simulation
[1] Leandro d S C, Diego L d A B 2010 Exp. Syst. Appl. 37 4198
[2] Juan L M M, Rafael M G, Ricardo A L, Carlos A I 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1706
[3] Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 0792 (in Chinese) [晋建秀, 丘水生 2010 59 0792]
[4] Li L X, Peng H P, Yang Y X, Wang X D 2007 Acta Phys. Sin. 56 0051 (in Chinese) [李丽香, 彭海朋, 杨义先, 王向东 2007 56 0051]
[5] Li L X, Peng H P, Yang Y X 2008 Acta Phys. Sin. 57 0703 (in Chinese) [李丽香, 彭海朋, 杨义先 2008 57 0703]
[6] Li L X, Yang Y X, Peng H P, Wang X D 2006 Chaos, Soliton. Fract. 28 1204
[7] Chen Z, Zeng Y C, Fu Z J 2008 Acta Phys. Sin. 57 0046 (in Chinese) [陈争, 曾以成, 付志坚 2008 57 0046]
[8] Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 61 170508]
[9] Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 62 080507]
[10] Zhu D W, Tu L L 2013 Acta Phys. Sin. 62 050508 (in Chinese) [祝大伟, 涂俐兰 2013 62 050508]
[11] Mohamadreza A, Hamed M 2012 Chaos, Soliton. Fract. 45 1108
[12] Inés P M, Joaquín M 2006 Phys. Lett. A 351 262
[13] Liu L Z, Zhang J Q, Xu G X, Liang L S, Huang S F 2013 Acta Phys. Sin. 62 170501 (in Chinese) [刘乐柱, 张季谦, 许贵霞, 梁立嗣, 黄守芳 2013 62 170501]
[14] Cai J J, Li Q, Li L X, Peng H P, Yang Y X 2012 Int. J. Electr. Power Energy Syst. 34 154
[15] Li Y Y, Wen Q Y, Li L X, Peng H P 2009 Chaos, Soliton. Fract. 42 880
[16] Wan M, Wang C, Li L X, Yang Y X 2012 Appl. Soft Comput. 12 2387
-
[1] Leandro d S C, Diego L d A B 2010 Exp. Syst. Appl. 37 4198
[2] Juan L M M, Rafael M G, Ricardo A L, Carlos A I 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1706
[3] Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 0792 (in Chinese) [晋建秀, 丘水生 2010 59 0792]
[4] Li L X, Peng H P, Yang Y X, Wang X D 2007 Acta Phys. Sin. 56 0051 (in Chinese) [李丽香, 彭海朋, 杨义先, 王向东 2007 56 0051]
[5] Li L X, Peng H P, Yang Y X 2008 Acta Phys. Sin. 57 0703 (in Chinese) [李丽香, 彭海朋, 杨义先 2008 57 0703]
[6] Li L X, Yang Y X, Peng H P, Wang X D 2006 Chaos, Soliton. Fract. 28 1204
[7] Chen Z, Zeng Y C, Fu Z J 2008 Acta Phys. Sin. 57 0046 (in Chinese) [陈争, 曾以成, 付志坚 2008 57 0046]
[8] Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 61 170508]
[9] Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 62 080507]
[10] Zhu D W, Tu L L 2013 Acta Phys. Sin. 62 050508 (in Chinese) [祝大伟, 涂俐兰 2013 62 050508]
[11] Mohamadreza A, Hamed M 2012 Chaos, Soliton. Fract. 45 1108
[12] Inés P M, Joaquín M 2006 Phys. Lett. A 351 262
[13] Liu L Z, Zhang J Q, Xu G X, Liang L S, Huang S F 2013 Acta Phys. Sin. 62 170501 (in Chinese) [刘乐柱, 张季谦, 许贵霞, 梁立嗣, 黄守芳 2013 62 170501]
[14] Cai J J, Li Q, Li L X, Peng H P, Yang Y X 2012 Int. J. Electr. Power Energy Syst. 34 154
[15] Li Y Y, Wen Q Y, Li L X, Peng H P 2009 Chaos, Soliton. Fract. 42 880
[16] Wan M, Wang C, Li L X, Yang Y X 2012 Appl. Soft Comput. 12 2387
Catalog
Metrics
- Abstract views: 6719
- PDF Downloads: 942
- Cited By: 0