-
提出了一种利用半导体环形激光器(SRLs)的新型高速双向、双信道混沌保密通信系统. 在该系统中, 首先利用交叉双光反馈对驱动激光器的顺时针模式和逆时针模式的混沌延时特征进行抑制. 然后将此混沌信号注入到一对响应激光器对应的顺时针模和逆时针模中, 以实现带宽的增强及混沌同步. 最后基于响应激光器之间的混沌同步, 实现高速率、双向、双信道的混沌保密通信. 通过对驱动激光器在交叉双光反馈作用下的混沌特性、以及响应激光器在不同条件下的同步特性进行了相关理论和仿真研究, 结果表明: 驱动激光器在合适的交叉双光反馈作用下可以产生延时特性被良好隐藏的顺时针模式和逆时针模式混沌信号; 在该混沌信号的注入下, 响应激光器输出的混沌信号带宽可以得到明显增强; 通过设置合适注入强度值和频率失谐值, 响应激光器之间可实现高质量的等时混沌同步. 最后, 对系统的双向、双信道混沌保密通信特性进行了讨论. 当10 Gbit/s信号传输距离为10 km时, 解调信息Q因子值仍可保持在6以上.Chaos is a fascinating phenomenon of nonlinear dynamical systems, and optical chaos communication has been one of potential frontier techniques to implement secure transmission of information. In this paper a novel high-speed bidirectional dual-channel chaos secure communication system is proposed based on semiconductor ring lasers (SRLs). In this system, the time delay signatures in chaotic output of clockwise (CW) and counterclockwise (CCW) patterns from a driving SRL (D-SRL) are firstly suppressed by using the double optical cross-feedback frame. Then, the chaotic output of D-SRL is injected into two response SRLs (R-SRLs) to drive the corresponding CW and CCW patterns of R-SRLs that are synchronized and bandwidth enhanced simultaneously. Thus, a bidirectional dual-channel chaos communication could be built based on chaotic synchronization of the two R-SRLs. We theoretically investigated the chaotic characteristics of a D-SRL under double optical cross-feedback and the chaotic synchronization features between R-SRL1 and R-SRL2 under different driving conditions. Results show that the time delay signatures of CW and CCW patterns of D-SRL could be effectively hidden under proper feedback conditions. The bandwidths of CW and CCW patterns of the D-SRL could be enhanced significantly. Furthermore, high-quality isochronous synchronization between R-SRL1 and R-SRL2 can be realized by choosing appropriate injection strength and detuning frequency in D-SRL and R-SRLs. Finally, the communication performances of bidirectional dual-channel chaos secure communication based on this proposed system are preliminarily examined and discussed, and the simulated results demonstrate that for 10 Gbit/s message, the Q factor of decoded message could be maintained above 6 after 10 kilometers distance transmission.
-
Keywords:
- semiconductor ring lasers /
- chaos secure communication /
- dual-channel /
- bidirectional
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wu L, Zhu S Q, Ni Y 2007 Eur. Phys. J. D 41 349
[3] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]
[4] Li K, Wang A B, Zhao T, Wang Y C 2013 Acta Phys. Sin. 62 144207 (in Chinese) [李凯, 王安帮, 赵彤, 王云才 2013 62 144207]
[5] Yan S L 2014 Chin. Phys. B 23 090503
[6] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762
[8] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243
[9] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237
[10] Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854
[11] Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974
[12] Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094
[13] Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[14] Sorel M, Giuliani G, Scirè A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187
[15] Yuan G H, Yu S Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1227
[16] Yuan G H, Yu S Y 2008 IEEE J. Quantum Electron. 44 41
[17] Först S, Sorel M 2008 IEEE Photon. Technol. Lett. 20 366
[18] Mashal L, Van der Sande G, Gelens L, Danckaert J, Verschaffelt G 2012 Opt. Express 20 22503
[19] Chlouverakis K E, Mikroulis S, Stamataki I, Syvridis D 2007 Opt. Lett. 32 2912
[20] Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523
[21] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874
[22] Kang Z X, Sun J, Ma L, Qi Y H, Jian S S 2014 IEEE J. Quantum Electron. 50 148
[23] Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603
[24] Vawter G A, Mar A, Hietala V, Zolper J, Hohimer J 1997 IEEE Photon. Technol. Lett. 9 1634
[25] Memon M I, Mezosi G, Li B, Lu D, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photon. Technol. Lett. 21 733
[26] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. & Laser Technol. 53 45
[27] Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439
[28] Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (California: Aca-demic Press) p49
[29] Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G 2012 Opt. Lett. 37 2541
[30] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[31] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442
[32] Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536
[33] Agrawal G P 2002 Fiber-Optic Communications Systems (3rd Ed.) (New York: John Wiley & Sons, Inc.) p166
-
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wu L, Zhu S Q, Ni Y 2007 Eur. Phys. J. D 41 349
[3] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]
[4] Li K, Wang A B, Zhao T, Wang Y C 2013 Acta Phys. Sin. 62 144207 (in Chinese) [李凯, 王安帮, 赵彤, 王云才 2013 62 144207]
[5] Yan S L 2014 Chin. Phys. B 23 090503
[6] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762
[8] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243
[9] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237
[10] Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854
[11] Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974
[12] Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094
[13] Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[14] Sorel M, Giuliani G, Scirè A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187
[15] Yuan G H, Yu S Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1227
[16] Yuan G H, Yu S Y 2008 IEEE J. Quantum Electron. 44 41
[17] Först S, Sorel M 2008 IEEE Photon. Technol. Lett. 20 366
[18] Mashal L, Van der Sande G, Gelens L, Danckaert J, Verschaffelt G 2012 Opt. Express 20 22503
[19] Chlouverakis K E, Mikroulis S, Stamataki I, Syvridis D 2007 Opt. Lett. 32 2912
[20] Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523
[21] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874
[22] Kang Z X, Sun J, Ma L, Qi Y H, Jian S S 2014 IEEE J. Quantum Electron. 50 148
[23] Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603
[24] Vawter G A, Mar A, Hietala V, Zolper J, Hohimer J 1997 IEEE Photon. Technol. Lett. 9 1634
[25] Memon M I, Mezosi G, Li B, Lu D, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photon. Technol. Lett. 21 733
[26] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. & Laser Technol. 53 45
[27] Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439
[28] Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (California: Aca-demic Press) p49
[29] Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G 2012 Opt. Lett. 37 2541
[30] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[31] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442
[32] Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536
[33] Agrawal G P 2002 Fiber-Optic Communications Systems (3rd Ed.) (New York: John Wiley & Sons, Inc.) p166
计量
- 文章访问数: 5838
- PDF下载量: 240
- 被引次数: 0