-
Chaos is a fascinating phenomenon of nonlinear dynamical systems, and optical chaos communication has been one of potential frontier techniques to implement secure transmission of information. In this paper a novel high-speed bidirectional dual-channel chaos secure communication system is proposed based on semiconductor ring lasers (SRLs). In this system, the time delay signatures in chaotic output of clockwise (CW) and counterclockwise (CCW) patterns from a driving SRL (D-SRL) are firstly suppressed by using the double optical cross-feedback frame. Then, the chaotic output of D-SRL is injected into two response SRLs (R-SRLs) to drive the corresponding CW and CCW patterns of R-SRLs that are synchronized and bandwidth enhanced simultaneously. Thus, a bidirectional dual-channel chaos communication could be built based on chaotic synchronization of the two R-SRLs. We theoretically investigated the chaotic characteristics of a D-SRL under double optical cross-feedback and the chaotic synchronization features between R-SRL1 and R-SRL2 under different driving conditions. Results show that the time delay signatures of CW and CCW patterns of D-SRL could be effectively hidden under proper feedback conditions. The bandwidths of CW and CCW patterns of the D-SRL could be enhanced significantly. Furthermore, high-quality isochronous synchronization between R-SRL1 and R-SRL2 can be realized by choosing appropriate injection strength and detuning frequency in D-SRL and R-SRLs. Finally, the communication performances of bidirectional dual-channel chaos secure communication based on this proposed system are preliminarily examined and discussed, and the simulated results demonstrate that for 10 Gbit/s message, the Q factor of decoded message could be maintained above 6 after 10 kilometers distance transmission.
-
Keywords:
- semiconductor ring lasers /
- chaos secure communication /
- dual-channel /
- bidirectional
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wu L, Zhu S Q, Ni Y 2007 Eur. Phys. J. D 41 349
[3] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]
[4] Li K, Wang A B, Zhao T, Wang Y C 2013 Acta Phys. Sin. 62 144207 (in Chinese) [李凯, 王安帮, 赵彤, 王云才 2013 62 144207]
[5] Yan S L 2014 Chin. Phys. B 23 090503
[6] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762
[8] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243
[9] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237
[10] Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854
[11] Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974
[12] Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094
[13] Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[14] Sorel M, Giuliani G, Scirè A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187
[15] Yuan G H, Yu S Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1227
[16] Yuan G H, Yu S Y 2008 IEEE J. Quantum Electron. 44 41
[17] Först S, Sorel M 2008 IEEE Photon. Technol. Lett. 20 366
[18] Mashal L, Van der Sande G, Gelens L, Danckaert J, Verschaffelt G 2012 Opt. Express 20 22503
[19] Chlouverakis K E, Mikroulis S, Stamataki I, Syvridis D 2007 Opt. Lett. 32 2912
[20] Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523
[21] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874
[22] Kang Z X, Sun J, Ma L, Qi Y H, Jian S S 2014 IEEE J. Quantum Electron. 50 148
[23] Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603
[24] Vawter G A, Mar A, Hietala V, Zolper J, Hohimer J 1997 IEEE Photon. Technol. Lett. 9 1634
[25] Memon M I, Mezosi G, Li B, Lu D, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photon. Technol. Lett. 21 733
[26] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. & Laser Technol. 53 45
[27] Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439
[28] Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (California: Aca-demic Press) p49
[29] Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G 2012 Opt. Lett. 37 2541
[30] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[31] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442
[32] Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536
[33] Agrawal G P 2002 Fiber-Optic Communications Systems (3rd Ed.) (New York: John Wiley & Sons, Inc.) p166
-
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wu L, Zhu S Q, Ni Y 2007 Eur. Phys. J. D 41 349
[3] Wang X F 2013 Acta Phys. Sin. 62 104208 (in Chinese) [王小发 2013 62 104208]
[4] Li K, Wang A B, Zhao T, Wang Y C 2013 Acta Phys. Sin. 62 144207 (in Chinese) [李凯, 王安帮, 赵彤, 王云才 2013 62 144207]
[5] Yan S L 2014 Chin. Phys. B 23 090503
[6] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762
[8] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243
[9] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237
[10] Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854
[11] Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974
[12] Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094
[13] Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[14] Sorel M, Giuliani G, Scirè A, Miglierina R, Donati S, Laybourn P J R 2003 IEEE J. Quantum Electron. 39 1187
[15] Yuan G H, Yu S Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1227
[16] Yuan G H, Yu S Y 2008 IEEE J. Quantum Electron. 44 41
[17] Först S, Sorel M 2008 IEEE Photon. Technol. Lett. 20 366
[18] Mashal L, Van der Sande G, Gelens L, Danckaert J, Verschaffelt G 2012 Opt. Express 20 22503
[19] Chlouverakis K E, Mikroulis S, Stamataki I, Syvridis D 2007 Opt. Lett. 32 2912
[20] Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523
[21] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1874
[22] Kang Z X, Sun J, Ma L, Qi Y H, Jian S S 2014 IEEE J. Quantum Electron. 50 148
[23] Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603
[24] Vawter G A, Mar A, Hietala V, Zolper J, Hohimer J 1997 IEEE Photon. Technol. Lett. 9 1634
[25] Memon M I, Mezosi G, Li B, Lu D, Wang Z R, Sorel M, Yu S Y 2009 IEEE Photon. Technol. Lett. 21 733
[26] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y 2013 Opt. & Laser Technol. 53 45
[27] Sunada S, Harayama T, Arai K, Yoshimura K, Tsuzuki K, Uchida A, Davis P 2011 Opt. Express 19 7439
[28] Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (California: Aca-demic Press) p49
[29] Nguimdo R M, Verschaffelt G, Danckaert J, Van der Sande G 2012 Opt. Lett. 37 2541
[30] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[31] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442
[32] Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536
[33] Agrawal G P 2002 Fiber-Optic Communications Systems (3rd Ed.) (New York: John Wiley & Sons, Inc.) p166
Catalog
Metrics
- Abstract views: 5873
- PDF Downloads: 240
- Cited By: 0