-
In this paper, we present a direct numerical simulation of particle sedimentation in two-phase flow with four different boundary conditions. We demonstrate that different boundary conditions can result in quite different flow behaviors. Some interesting results are obtained. By redefining the computational domain at each time step according to the position of the particle, we construct an infinite channel, which can simulate the particle sedimentation accurately; the flow pattern of periodic boundary is quite different from the infinite channel because of the disturbed flow field; if the settlement is reached steadily before the closed bottom, the closed channel can also simulate the particle settled in the infinite channel; the fluidized condition slows down the particle sedimentation, which is very helpful for better using the boundary conditions.
-
Keywords:
- direct numerical simulation /
- boundary condition /
- sedimentation /
- arbitrary Lagrangian-Eulerian technique
[1] Liu H T, Tong Z H 2009 Acta Phys. Sin. 58 6369 (in Chinese) [刘汉涛, 仝志辉 2009 58 6369]
[2] Liu H T, Chang J Z 2010 Acta Phys. Sin. 59 1877 (in Chinese) [刘汉涛, 常建忠 2010 59 1877]
[3] Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95
[4] Chang J Z, Liu H T, Su T X, Liu M B 2011 Int. J. Comp. Meth. 8 851
[5] Tong Z H, Liu H T, Chang J Z, An K 2012 Acta Phys. Sin. 61 024401 (in Chinese) [仝志辉, 刘汉涛, 常建忠, 安康 2012 61 024401]
[6] Sharma N, Patankar N A 2005 J. Comput. Phys. 205 439
[7] Luo K, Wang Z L, Fan J R 2007 Comput. Methods Appl. Mech. Engrg. 197 36
[8] Ladd A J C, Verberg R 2001 J. Stat. Phys. 104 1191
[9] Yu Z S, Shao X M, Anthony W 2006 J. Comput. Phys. 217 424
[10] Wan D C 2006 Pearl River 6 29
[11] Chen S, Phan T N, Boo C K, Fan X J 2006 Phys. Fluids 18 103605
[12] Thompson K W 1987 J. Comput. Phys. 68 1
[13] Berenger J P 1994 J. Comput. Phys. 114 185
[14] Hu H H, Joseph D D, Crochet M J 1992 Fluid Dyn. 3 285
[15] Gan H, Chang J Z, Feng J J, Hu H H 2003 J. Fluid Mech. 481 385
[16] Dennis S C R, Chang G Z 1970 J. Fluid Mech. 42 471
[17] Chang M W, Finlayson B A 1987 Nume. Heat Transfer 12 179
-
[1] Liu H T, Tong Z H 2009 Acta Phys. Sin. 58 6369 (in Chinese) [刘汉涛, 仝志辉 2009 58 6369]
[2] Liu H T, Chang J Z 2010 Acta Phys. Sin. 59 1877 (in Chinese) [刘汉涛, 常建忠 2010 59 1877]
[3] Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95
[4] Chang J Z, Liu H T, Su T X, Liu M B 2011 Int. J. Comp. Meth. 8 851
[5] Tong Z H, Liu H T, Chang J Z, An K 2012 Acta Phys. Sin. 61 024401 (in Chinese) [仝志辉, 刘汉涛, 常建忠, 安康 2012 61 024401]
[6] Sharma N, Patankar N A 2005 J. Comput. Phys. 205 439
[7] Luo K, Wang Z L, Fan J R 2007 Comput. Methods Appl. Mech. Engrg. 197 36
[8] Ladd A J C, Verberg R 2001 J. Stat. Phys. 104 1191
[9] Yu Z S, Shao X M, Anthony W 2006 J. Comput. Phys. 217 424
[10] Wan D C 2006 Pearl River 6 29
[11] Chen S, Phan T N, Boo C K, Fan X J 2006 Phys. Fluids 18 103605
[12] Thompson K W 1987 J. Comput. Phys. 68 1
[13] Berenger J P 1994 J. Comput. Phys. 114 185
[14] Hu H H, Joseph D D, Crochet M J 1992 Fluid Dyn. 3 285
[15] Gan H, Chang J Z, Feng J J, Hu H H 2003 J. Fluid Mech. 481 385
[16] Dennis S C R, Chang G Z 1970 J. Fluid Mech. 42 471
[17] Chang M W, Finlayson B A 1987 Nume. Heat Transfer 12 179
Catalog
Metrics
- Abstract views: 6683
- PDF Downloads: 612
- Cited By: 0