搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限空间中经典场的正则量子化

刘波 王青 李永明 隆正文

引用本文:
Citation:

有限空间中经典场的正则量子化

刘波, 王青, 李永明, 隆正文

Canonical quantization of classical fields in finite volume

Liu Bo, Wang Qing, Li Yong-Ming, Long Zheng-Wen
PDF
导出引用
  • 从离散的角度研究带边界的1+1维经典标量场和Dirac场的正则量子化问题. 与以往不同的是, 这里将时间和空间两个变量同时进行变步长的离散, 应用变步长离散的变分原理, 得到离散形式的运动方程、边界条件和能量守恒的表达式. 然后, 根据Dirac理论, 将边界条件当作初级约束, 将边界条件和内在约束统一处理. 研究表明, 采用此方法, 不仅在每个离散的时空格点上能够建立起Dirac括号, 从而可以完成该模型的正则量子化;而且, 该方法还保持了离散情况下的能量守恒.
    We study the problem of canonical quantization of classical scalar and Dirac field theories in the finite volumes respectively in this paper. Unlike previous studies, we work in a completely discrete version. We discretize both the space and time variables in variable steps and use the difference discrete variational principle with variable steps to obtain the equations of motion and boundary conditions as well as the conservation of energy in discrete form. For the case of classical scalar field, the quantization procedure is simpler since it does not contain any intrinsic constraint. We take the boundary conditions as primary Dirac constraints and use the Dirac theory to construct Dirac brackets directly. However, for the case of classical Dirac field in a finite volume, things are complex since, besides boundary conditions, it contains intrinsic constraints which are introduced by the singularity of the Lagrangian. Furthermore, these two kinds of constraints are entangled at the spatial boundaries. In order to simplify the process of calculation, we calculate the final Dirac brackets in two steps. We calculate the intermediate Dirac brackets by using intrinsic constraints. And then, we obtain the final Dirac brackets by bracketing the boundary conditions. Our studies show that we can not only construct well-defined Dirac brackets at each discrete space-time lattice but also keep the conservation of energy discretely at the same time.
    • 基金项目: 国家自然科学基金(批准号:10865003)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 10865003).
    [1]

    Sheikh-Jabbari M M, Shirzad A 2001 Eur. Phys. J. C 19 383

    [2]

    Jing J 2005 Eur. Phys. J. C 39 123

    [3]

    Jing J, Long Z W 2005 Phys. Rev. D 72 126002

    [4]

    Long Z W, Chen L 2007 High Energy Phys. and Nucl. Phys. 31 14 (in Chinese) [隆正文, 陈琳 2007 高能物理与核物理 31 14]

    [5]

    Wang Q, Long Z W, Luo C B 2013 Acta Phys. Sin. 62 100305 (in Chinese) [王青, 隆正文, 罗翠柏 2013 62 100305]

    [6]

    Dirac P A M 1964 Lecture Notes on Quantum Mechanics (1st Ed.) (New York: Yeshiva University) p8

    [7]

    Faddeev L D, Jackiw R 1988 Phys. Rev. Lett. 60 1692

    [8]

    Long Z W, Jing J 2003 Phys. Lett. B 560 128

    [9]

    Jing J, Long Z W, Tian L J, Jin S 2003 Euro. Phys. J. C 29 447

    [10]

    Lee T D 1983 Phys. Lett. B 122 217

    [11]

    Ruth R D 1983 IEEE Trans. Nucl. Sci. 30 1669

    [12]

    Feng K 1985 Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations—Computation of Partial Differential Equations (edited by Feng Keng) (Beijing: Science Press)

    [13]

    Guo H Y, Wu K 2003 J. Math. Phys. 44 5978

    [14]

    Guo H Y, Wu K, Wang S K, Wang S H, Wang S K, Wei J M 2000 Commu. Theor. Phys. 34 307

    [15]

    Guo H Y, Li Y Q, Wu K 2001 Commu. Theor. Phys. 35 703

    [16]

    Xia L L, Chen L Q, Fu J L, Wu J H 2014 Chin. Phys. B. 23 070201

    [17]

    Gitman D M, Tyutin I V 1990 Quantization of Fields with Constraints (1st Ed.) (New York: Springer-Verlag) p276

  • [1]

    Sheikh-Jabbari M M, Shirzad A 2001 Eur. Phys. J. C 19 383

    [2]

    Jing J 2005 Eur. Phys. J. C 39 123

    [3]

    Jing J, Long Z W 2005 Phys. Rev. D 72 126002

    [4]

    Long Z W, Chen L 2007 High Energy Phys. and Nucl. Phys. 31 14 (in Chinese) [隆正文, 陈琳 2007 高能物理与核物理 31 14]

    [5]

    Wang Q, Long Z W, Luo C B 2013 Acta Phys. Sin. 62 100305 (in Chinese) [王青, 隆正文, 罗翠柏 2013 62 100305]

    [6]

    Dirac P A M 1964 Lecture Notes on Quantum Mechanics (1st Ed.) (New York: Yeshiva University) p8

    [7]

    Faddeev L D, Jackiw R 1988 Phys. Rev. Lett. 60 1692

    [8]

    Long Z W, Jing J 2003 Phys. Lett. B 560 128

    [9]

    Jing J, Long Z W, Tian L J, Jin S 2003 Euro. Phys. J. C 29 447

    [10]

    Lee T D 1983 Phys. Lett. B 122 217

    [11]

    Ruth R D 1983 IEEE Trans. Nucl. Sci. 30 1669

    [12]

    Feng K 1985 Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations—Computation of Partial Differential Equations (edited by Feng Keng) (Beijing: Science Press)

    [13]

    Guo H Y, Wu K 2003 J. Math. Phys. 44 5978

    [14]

    Guo H Y, Wu K, Wang S K, Wang S H, Wang S K, Wei J M 2000 Commu. Theor. Phys. 34 307

    [15]

    Guo H Y, Li Y Q, Wu K 2001 Commu. Theor. Phys. 35 703

    [16]

    Xia L L, Chen L Q, Fu J L, Wu J H 2014 Chin. Phys. B. 23 070201

    [17]

    Gitman D M, Tyutin I V 1990 Quantization of Fields with Constraints (1st Ed.) (New York: Springer-Verlag) p276

  • [1] 赖煜成, 陈苏琪, 牟兰雅, 王兆娜. 基于麦克斯韦方程组的纳米尺度电磁边界条件.  , 2021, 70(23): 230301. doi: 10.7498/aps.70.20211025
    [2] 李晓亮, 陈宪章, 刘郴荣, 黄亮. 复杂势场量子弹球中疤痕态的量子化条件.  , 2020, 69(8): 080506. doi: 10.7498/aps.69.20200360
    [3] 谭志中, 谭震. 一类任意m×n阶矩形网络的电特性.  , 2020, 69(2): 020502. doi: 10.7498/aps.69.20191303
    [4] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件.  , 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [5] 王海啸, 徐林, 蒋建华. Dirac光子晶体.  , 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [6] 刘汉涛, 常建忠. 直接模拟中不同边界条件的实施及对沉降规律的影响.  , 2013, 62(8): 084401. doi: 10.7498/aps.62.084401
    [7] 王青, 隆正文, 罗翠柏. 有限空间中Dirac场的正则量子化.  , 2013, 62(10): 100305. doi: 10.7498/aps.62.100305
    [8] 李树玲, 张劭光. 双凹盘形解开口膜泡形状的解析法研究.  , 2010, 59(8): 5202-5208. doi: 10.7498/aps.59.5202
    [9] 张旭, 周玉泽, 闭强, 杨兴华, 俎云霄. 有边界条件的忆阻元件模型及其性质.  , 2010, 59(9): 6673-6680. doi: 10.7498/aps.59.6673
    [10] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究.  , 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [11] 刘成周, 张昌平. 二维静态时空中Dirac场的重正化能动张量和Casimir效应.  , 2007, 56(4): 1928-1937. doi: 10.7498/aps.56.1928
    [12] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响.  , 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [13] 马中骐, 许伯威. 精确的量子化条件和不变量.  , 2006, 55(4): 1571-1579. doi: 10.7498/aps.55.1571
    [14] 隆正文, 刘 波, 李子平. 约束系统量子化中Dirac方法与Faddeev-Jackiw方法的等价性.  , 2004, 53(7): 2094-2099. doi: 10.7498/aps.53.2094
    [15] 梁昌洪, 褚庆昕. 运动边界的电磁场边界条件.  , 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [16] 罗智坚, 朱建阳. Schwarzschild黑洞背景下Dirac场的熵.  , 1999, 48(3): 395-401. doi: 10.7498/aps.48.395
    [17] 张润东, 阎凤利, 李伯臧. 由含时边界条件的两种有限深量子势阱构造的哈密顿算符和它们的复BERRY相位.  , 1998, 47(10): 1585-1599. doi: 10.7498/aps.47.1585
    [18] 刘登云. 具有含时频率和边界条件的谐振子量子态的Berry相位.  , 1998, 47(8): 1233-1240. doi: 10.7498/aps.47.1233
    [19] 李治宽. 自由电子激光的准Dirac方程.  , 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [20] 刘辽, 许殿彦. Dirac粒子的Hawking蒸发.  , 1980, 29(12): 1617-1624. doi: 10.7498/aps.29.1617
计量
  • 文章访问数:  8111
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map