-
We have studied the specimens made of amino acids arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is defined by a gene and encoded in the genetic code. This can happen either before the protein is used in the cell, or as part of control mechanism. This paper considers a new physical phenomenon - infrared characteristic radiation (IRCR) at first order phase transitions (melt crystallization, and vapor condensation and/or deposition). Experimental results are analyzed in terms of their correspondence to the theoretical model. This model is based on the assertion that the particle's (atom's, molecule's, or cluster's) transition from a higher energetic level in a metastable or unstable phase (vapor or liquid) to a lower level in a stable phase (liquid or crystal) can emit one or more photons. The energy of these photons depends on the latent energy of the phase transition and the character of bonds formed by the particles in the new phase. For all investigated substances, this energy falls in the infrared range. This is a reason why the radiation is named as IRCR-infrared characteristic radiation. Many sources of the infrared radiation recorded in the atmosphere seem to be a result of crystallization, condensation and/or sublimation of water during fog and cloud formation. Thus, the effect under investigation must play a very important role in atmospheric phenomena: it is one of the sources of Earth's cooling; formation of hailstorm clouds is accompanied by intensive characteristic infrared radiation that could be used for process characterization and meteorological warnings. IRCR seems to explain red color of Jupiter. It can be used for atmospheric energy accumulation, and, thus, together with wind, falling water, solar and geothermal energies, IRCR makes available the fifth source of ecologically pure energy.
-
Keywords:
- crystal growth from melt /
- crystal growth from vapor /
- vapor trouton's rule /
- atmospheric energy accumulation
[1] Tatarchenko V A 1979 Soviet Physics - Crystallography 24 238
[2] Umarov L M, Tatarchenko V A 1984 Soviet Physics - Crystallography 29 670
[3] Tatarchenko V A, Umarov L M 1980 Soviet Physics-Crystallography 25 748
[4] Tatarchenko V A 1993 Shaped crystal growth London Kluwer
[5] Perel'man M E, Tatartchenko V A 2007 arXiv 0711.3570 1
[6] Perel'man M E, Tatartchenko V A 2008 Phys. Lett. A 372 2480
[7] Perel'man M E, Rubinstein G M, Tatartchenko V A 2008 Phys. Lett. A 372 4100
[8] Tatartchenko V A 2008 J. Crystal Growth 310 525
[9] Tatartchenko V A 2009 Rev. Adv. Mater. Sci. 20 58
[10] Tatartchenko V A 2009 Optics & Laser Technology 41 949
[11] Tatartchenko V A 2010 Proceedings of 7th Conference "Modern Problems of Distance Probes of Earth from Space" 7 310
[12] Tatartchenko V A 2010 Investigation of Earth from Space 2 88 (in Russian)
[13] Tatartchenko V A 2010 Atmospheric and Oceanic Optics 23 169
[14] Tatartchenko V A 2010 Earth Sci. Rev. 101 24
[15] Tatartchenko V A 2011 Earth Sci. Rev. 107 311
[16] Tatartchenko V A, Liu Y F, Chen W Y, Smirnov P V 2012 Earth Sci. Rev. 114 218
[17] Tatartchenko V A, Liu Y F, Chen W Y, Zhou J J, Zhu Z Y, Smirnov P V, Niu S J, Li D Z, Lu Y F 2012 Lecture Notes in Information Technology 9 191
[18] Ravilious K Cloud 2010 New Scientist 27 November 38
[19] Dicke R H 1954 Phys. Rev. 93 99
[20] Ginzburg V L, Tsytovich V N 1984 Transient Radiation and Transient Scattering Moscow Nauka
[21] Wisniak J 2001 The Chemical Educator 6 55
[22] Nichols L W, Lamar J 1968 Applied Optics 7 1757
[23] Gao S T, Zhou Y S, Lei T 2002 中国物理快报 19 878
[24] Wu S C, Fan S H, Chen F 2003 中国物理快报 20 2192
[25] Vilor N V, Abushenko N A, Tastchilin S A 2004 Investigation of the Earth from Space 2 17
[26] Potter W R, Hoffman J G 1968 Infrared Physics 8 265
[27] Carlon H R 1971 Appl. Opt. 10 2297
[28] Carlon H R 1979 Infrared Physics 19 49
[29] Wang Kuo-Ting 2011 Phase-transition radiation of water Urbana Illinois
[30] Wu W H 2012 Temperature effect of phase transition radiation of water Urbana Illinois
[31] Wang K T, Brewster M Q 2010 International Communications in Heat and Mass Transfer 37 945
[32] Xie H R, Zhu M Y, Zhang B, Guan X 2012 Energy Procedia 16 997
[33] Zhang B, Zhu M Y, Wang C Y, Guan X 2012 Energy Procedia 16 1003
-
[1] Tatarchenko V A 1979 Soviet Physics - Crystallography 24 238
[2] Umarov L M, Tatarchenko V A 1984 Soviet Physics - Crystallography 29 670
[3] Tatarchenko V A, Umarov L M 1980 Soviet Physics-Crystallography 25 748
[4] Tatarchenko V A 1993 Shaped crystal growth London Kluwer
[5] Perel'man M E, Tatartchenko V A 2007 arXiv 0711.3570 1
[6] Perel'man M E, Tatartchenko V A 2008 Phys. Lett. A 372 2480
[7] Perel'man M E, Rubinstein G M, Tatartchenko V A 2008 Phys. Lett. A 372 4100
[8] Tatartchenko V A 2008 J. Crystal Growth 310 525
[9] Tatartchenko V A 2009 Rev. Adv. Mater. Sci. 20 58
[10] Tatartchenko V A 2009 Optics & Laser Technology 41 949
[11] Tatartchenko V A 2010 Proceedings of 7th Conference "Modern Problems of Distance Probes of Earth from Space" 7 310
[12] Tatartchenko V A 2010 Investigation of Earth from Space 2 88 (in Russian)
[13] Tatartchenko V A 2010 Atmospheric and Oceanic Optics 23 169
[14] Tatartchenko V A 2010 Earth Sci. Rev. 101 24
[15] Tatartchenko V A 2011 Earth Sci. Rev. 107 311
[16] Tatartchenko V A, Liu Y F, Chen W Y, Smirnov P V 2012 Earth Sci. Rev. 114 218
[17] Tatartchenko V A, Liu Y F, Chen W Y, Zhou J J, Zhu Z Y, Smirnov P V, Niu S J, Li D Z, Lu Y F 2012 Lecture Notes in Information Technology 9 191
[18] Ravilious K Cloud 2010 New Scientist 27 November 38
[19] Dicke R H 1954 Phys. Rev. 93 99
[20] Ginzburg V L, Tsytovich V N 1984 Transient Radiation and Transient Scattering Moscow Nauka
[21] Wisniak J 2001 The Chemical Educator 6 55
[22] Nichols L W, Lamar J 1968 Applied Optics 7 1757
[23] Gao S T, Zhou Y S, Lei T 2002 中国物理快报 19 878
[24] Wu S C, Fan S H, Chen F 2003 中国物理快报 20 2192
[25] Vilor N V, Abushenko N A, Tastchilin S A 2004 Investigation of the Earth from Space 2 17
[26] Potter W R, Hoffman J G 1968 Infrared Physics 8 265
[27] Carlon H R 1971 Appl. Opt. 10 2297
[28] Carlon H R 1979 Infrared Physics 19 49
[29] Wang Kuo-Ting 2011 Phase-transition radiation of water Urbana Illinois
[30] Wu W H 2012 Temperature effect of phase transition radiation of water Urbana Illinois
[31] Wang K T, Brewster M Q 2010 International Communications in Heat and Mass Transfer 37 945
[32] Xie H R, Zhu M Y, Zhang B, Guan X 2012 Energy Procedia 16 997
[33] Zhang B, Zhu M Y, Wang C Y, Guan X 2012 Energy Procedia 16 1003
Catalog
Metrics
- Abstract views: 6279
- PDF Downloads: 633
- Cited By: 0