-
为研制出满足惯性约束聚变(ICF)实验的氘氚(DT)冷冻靶, 需要控制DT结晶生长过程, 实现DT单晶生长, 由此减少影响冰层均匀化及聚变实验的晶体缺陷. 本文运用晶体生长形态动力学理论建立了密排六方晶体(hcp)单晶生长模型, 实验中通过对靶室进行± 3 mK精确控温, 采用可见光背光成像技术在线表征了低温下玻璃微球内氘(D2)的结晶生长过程, 结果表明: 在20–100 Pa低温氦气导热环境下, 通过缓慢降温可显著降低氘晶体生长过程中形成的缺陷; 当降温速率达到2 mK/min时, 观测到了氘燃料的两种单晶生长过程, 实验具有可重复性; 建立的hcp单晶生长理论模型与实验结果符合, 并与美国利弗莫尔国家实验室(LLNL)的DT单晶生长过程进行了对比, 提出了冷冻靶内D2/DT燃料的单晶生长方法.To develop deuterium-tritium (DT) cryogenic targets that meet the inertial confinement fusion (ICF) experiment requirements, the DT crystal seeding growth process needs to be controlled to obtain single crystalline DT-ice, thus reducing the crystal defects formed during crystal growth and improving ice-layering. In this paper, the close-packed hexagonal (hcp) single crystal growth mode has been established through kinetic theory of crystal growth morphology. Experimentally, the target chamber temperature is controlled to within ± 3 mK and the deuterium (D2) crystal growth process can be observed by backlit shadowgraphy. Results show that slow cooling can reduce the crystal defects significantly at the 20–100 Pa conducting helium pressure. When the cooling rate reaches 2 mK/min, two single crystal growth modes are observed with good reproducibility. Experimental results conform with the proposed hcp single crystal growth model. Compared with the results from Lawrence Livermore National Laboratory (LLNL), the methods of D2/DT single crystal growth in the cryogenic target are proposed.
-
Keywords:
- inertial confinement fusion(ICF) /
- backlit shadowgraphy /
- cooling rate /
- single crystal growth
[1] Schultzu K R, Kaae J L 1999 Fusion Engineering and Design. 68 441
[2] Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202
[3] Harding D R, Meyerhofer D D 2006 Appl. Phys. Lett. 13 056316
[4] Kozioziemski B J, Kucheyev S O 2009 Journal of Applied Physics. 105 093512
[5] Harding D R, Wittman M D, Edgell D H 2012 Fusion Science and Technology. 28 95
[6] Chernov A A, Kozioziemski B J 2009 Appl. Phys. Lett. 94 064105
[7] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[8] Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) pp97-102 (in Chinese) [介万奇 2010 晶体生长原理及技术 (北京:科学出版社) 第78–102页]
[9] Wang P, Li G C 2013 Crystallography Teaching Material (Beijing: National Defense Industry Press) pp18-20 (in Chinese) [王萍, 李国昌 2013 结晶学教程(北京:国防工业出版社) 第18–20页]
[10] Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) p74 (in USA)
-
[1] Schultzu K R, Kaae J L 1999 Fusion Engineering and Design. 68 441
[2] Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202
[3] Harding D R, Meyerhofer D D 2006 Appl. Phys. Lett. 13 056316
[4] Kozioziemski B J, Kucheyev S O 2009 Journal of Applied Physics. 105 093512
[5] Harding D R, Wittman M D, Edgell D H 2012 Fusion Science and Technology. 28 95
[6] Chernov A A, Kozioziemski B J 2009 Appl. Phys. Lett. 94 064105
[7] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[8] Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) pp97-102 (in Chinese) [介万奇 2010 晶体生长原理及技术 (北京:科学出版社) 第78–102页]
[9] Wang P, Li G C 2013 Crystallography Teaching Material (Beijing: National Defense Industry Press) pp18-20 (in Chinese) [王萍, 李国昌 2013 结晶学教程(北京:国防工业出版社) 第18–20页]
[10] Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) p74 (in USA)
计量
- 文章访问数: 6098
- PDF下载量: 367
- 被引次数: 0