搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋环境噪声场对称性分析及噪声消除方法

夏麾军 马远良 刘亚雄

引用本文:
Citation:

海洋环境噪声场对称性分析及噪声消除方法

夏麾军, 马远良, 刘亚雄

Analysis of the symmetry of the ambient noise and study of the noise reduction

Xia Hui-Jun, Ma Yuan-Liang, Liu Ya-Xiong
PDF
导出引用
  • 实际的海洋环境是非常复杂的, 存在着海洋自噪声、舰船噪声、生物发声等, 阵元接收到的噪声信号存在一定的相关性, 此时基于传统阵列信号处理的目标方位估计方法的性能将变差, 针对这一问题, 提出了一种实部消除方法. 首先从阵元接收环境噪声的物理机理出发, 将圆环阵接收的噪声场分解为对称噪声场和非对称噪声场, 并且研究发现对称噪声场只影响数据协方差矩阵的实部. 然后通过消除协方差矩阵实部, 达到消除对称噪声场的目的, 提高信噪比, 但是同时产生了虚假声源. 针对虚假声源的问题, 提出了基于优化算法重构协方差矩阵实部的方法, 消除了虚假声源的影响. 仿真分析与海试数据处理结果表明: 该方法明显消除了对称噪声, 提高了信噪比, 改善了阵列信号处理算法的性能. 实部消除方法易于实现, 有一定的工程应用价值.
    Acoustic environment has a low signal-to-noise ratio (SNR); hence, array signal processing is widely used for noise reduction and signal enhancement. The actual ambient noise includes uncorrelated noise and correlated noise. The received noises of the two arbitrary array elements are correlated. Consequently, the performance of array signal processing method decreases obviously. Aiming at this problem, the real-part elimination of covariance matrix method is proposed. Firstly, from a physical point of view, the noise signals can be generated by using a number of uncorrelated noise sources: the more the noise sources, the less the error between the noise from the model and the actual noise will be. Theoretically, the noise field is decomposed into the symmetrical noise field and the asymmetrical noise field. A number of noise sources generate the symmetrical noise fields; the directions of these noise sources are symmetric, and the powers of two arbitrary symmetric sources are the same. Secondly, the symmetry of the ambient noise is analyzed, as a result, the symmetrical noise can only affect the real part of the covariance matrix. Thirdly, the real part of covariance matrix is eliminated in order to reduce the noise, and then the delay-and-sum beamforming is achieved by using only the imaginary part. The advantages are that the output signal-to-noise ratio is increased and the noise output power is reduced obviously; the disadvantage is that it produces a false target. The azimuth of the actual target differs from that of the false target by 180, and the false target cannot be distinguished. Finally, to eliminate the false target, the real part of the signal covariance matrix is reconstructed by establishing a constrained optimization problem, which is solved by using the particle swarm algorithm. Then, the reconstructed covariance matrix composed of the imaginary part and the reconstruction of real part is applied to delay-and-sum beamforming, as a result, the false target is eliminated. The simulation results show that the real-part elimination of covariance matrix method reduces the symmetrical ambient noise, the noise output power is reduced, the output signal-to-noise ratio is increased, and this method improves the performance of array signal processing. The experimental results show that the output SNRs of two targets with using the imaginary part of covariance matrix are increased by 3.57 dB and 3.149 dB, respectively, and the output SNRs of two targets with using the reconstructed covariance matrix are increased by 7.027 dB and 6.985 dB, respectively. The real-part elimination of covariance matrix method is easy to implemente, and has a definite value for engineering application.
      通信作者: 马远良, ylma@nwpu.edu.cn
      Corresponding author: Ma Yuan-Liang, ylma@nwpu.edu.cn
    [1]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [2]

    Yang Y X 2002 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [杨益新 2004 博士学位论文 (西安: 西北工业大学)]

    [3]

    van Trees H L 2002 Optimum Array Processing: Part Iv of Detection, Estimation, and Modulation Theory (New York: Wiley) pp428-429

    [4]

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Theory and Algorithms of the Spatial Spectrum Estimation (Beijing: Tsinghua University Press) pp2-6 (in Chinese) [王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京: 清华大学出版社) 第2-6页]

    [5]

    Buckingham M J 2012 J. Acoust. Soc. Am. 131 2643

    [6]

    Wenz G M 1972 J. Acoust. Soc. Am. 51 1010

    [7]

    Yan S F, Ma Y L, Ni J P, Yang K D 2003 Tech. Acous. 22 30 (in Chinese) [鄢社锋, 马远良, 倪晋平, 杨坤德 2003 声学技术 22 30]

    [8]

    Habets E A, Gannot S 2007 J. Acoust. Soc. Am. 122 3464

    [9]

    Prasad S, Williams R T, Mahalanabis A K, Sibul, L H 1988 IEEE Trans. ASSP 36 631

    [10]

    Moghaddamjoo A 1991 IEEE Trans. SP 39 219

    [11]

    Li M H, Lu Y L 2008 IEEE Trans. AES 44 1079

    [12]

    Farrier D R, Jeffries D J 1985 Proceedings of the ICASSP'85 Florida, March 26-29, 1985 p1788

    [13]

    Goulding M M, Bird J S 1990 IEEE Trans. Veh. Technol. 39 316

    [14]

    Shen W M, Ma Y L 1990 Proceedings of International Workshop on Marine Acoustics Beijing, March 26-30, 1990, p317

    [15]

    Shen W M 1989 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese) [沈文苗 1989 硕士学位论文 (西安: 西北工业大学)]

    [16]

    Zhang D H, Ma Y L, Yang K D, Pan Y 2008 Proceedings of CISP'08 Sanya China, May 27-30 2008 p552

    [17]

    Wang L, Yang Y X, Wang Y 2012 Computer Simulation 29 192 (in Chinese) [王露, 杨益新, 汪勇 2012 计算机仿真 29 192]

  • [1]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [2]

    Yang Y X 2002 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [杨益新 2004 博士学位论文 (西安: 西北工业大学)]

    [3]

    van Trees H L 2002 Optimum Array Processing: Part Iv of Detection, Estimation, and Modulation Theory (New York: Wiley) pp428-429

    [4]

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Theory and Algorithms of the Spatial Spectrum Estimation (Beijing: Tsinghua University Press) pp2-6 (in Chinese) [王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京: 清华大学出版社) 第2-6页]

    [5]

    Buckingham M J 2012 J. Acoust. Soc. Am. 131 2643

    [6]

    Wenz G M 1972 J. Acoust. Soc. Am. 51 1010

    [7]

    Yan S F, Ma Y L, Ni J P, Yang K D 2003 Tech. Acous. 22 30 (in Chinese) [鄢社锋, 马远良, 倪晋平, 杨坤德 2003 声学技术 22 30]

    [8]

    Habets E A, Gannot S 2007 J. Acoust. Soc. Am. 122 3464

    [9]

    Prasad S, Williams R T, Mahalanabis A K, Sibul, L H 1988 IEEE Trans. ASSP 36 631

    [10]

    Moghaddamjoo A 1991 IEEE Trans. SP 39 219

    [11]

    Li M H, Lu Y L 2008 IEEE Trans. AES 44 1079

    [12]

    Farrier D R, Jeffries D J 1985 Proceedings of the ICASSP'85 Florida, March 26-29, 1985 p1788

    [13]

    Goulding M M, Bird J S 1990 IEEE Trans. Veh. Technol. 39 316

    [14]

    Shen W M, Ma Y L 1990 Proceedings of International Workshop on Marine Acoustics Beijing, March 26-30, 1990, p317

    [15]

    Shen W M 1989 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese) [沈文苗 1989 硕士学位论文 (西安: 西北工业大学)]

    [16]

    Zhang D H, Ma Y L, Yang K D, Pan Y 2008 Proceedings of CISP'08 Sanya China, May 27-30 2008 p552

    [17]

    Wang L, Yang Y X, Wang Y 2012 Computer Simulation 29 192 (in Chinese) [王露, 杨益新, 汪勇 2012 计算机仿真 29 192]

  • [1] 张令春, 姜海明, 张俊喜, 谢康. 局部异常因子优化的椭圆拟合算法及其在光纤振动传感相位解调中的应用.  , 2022, 71(19): 194206. doi: 10.7498/aps.71.20220401
    [2] 周建波, 朴胜春, 刘亚琴, 祝捍皓. 海面随机起伏对噪声场空间特性的影响规律.  , 2017, 66(1): 014301. doi: 10.7498/aps.66.014301
    [3] 夏麾军, 马远良, 刘亚雄. 复杂噪声场下对角减载技术的原理及应用.  , 2017, 66(1): 014304. doi: 10.7498/aps.66.014304
    [4] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响.  , 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [5] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究.  , 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [6] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌.  , 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [7] 杨殿阁, 李兵, 王子腾, 连小珉. 运动声源识别的动态波叠加方法研究.  , 2012, 61(5): 054306. doi: 10.7498/aps.61.054306
    [8] 罗召洋, 杨孝全, 孟远征, 邓勇. Micro CT中混叠伪影的消除.  , 2010, 59(11): 8237-8243. doi: 10.7498/aps.59.8237
    [9] 李瑞珉, 杜 磊, 庄奕琪, 包军林. MOSFET 辐照诱生界面陷阱形成过程的1/f噪声研究.  , 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [10] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法.  , 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [11] 马 军, 蒲忠胜, 冯旺军, 李维学. 旋转中心力场消除螺旋波和时空混沌.  , 2005, 54(10): 4602-4609. doi: 10.7498/aps.54.4602
    [12] 刘新元, 谢柏青, 戴远东, 王福仁, 李壮志, 马 平, 谢飞翔, 杨 涛, 聂瑞娟. 射频SQUID心磁图数据自适应滤波研究.  , 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [13] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用.  , 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [14] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象.  , 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [15] 程庆华, 曹 力, 吴大进, 王 俊. 实虚部关联的量子噪声和泵噪声对单模激光动力学性质的影响.  , 2004, 53(6): 1675-1681. doi: 10.7498/aps.53.1675
    [16] 杨振军, 胡 巍, 傅喜泉, 陆大全, 郑一周. 超短啁啾脉冲光束空间奇异性的形成与消除.  , 2003, 52(8): 1920-1924. doi: 10.7498/aps.52.1920
    [17] 傅喜泉, 郭弘, 胡巍, 刘承宜, 王筱平. 超短脉冲光束传输缓变包络近似理论的失效和空间奇异性的形成与消除.  , 2001, 50(9): 1693-1698. doi: 10.7498/aps.50.1693
    [18] 程 成, 何赛灵. 大口径铜蒸气激光“黑心”的优化消除.  , 2000, 49(7): 1267-1272. doi: 10.7498/aps.49.1267
    [19] 许祯镛. 随机海洋声信道下的噪声场时空相关函数.  , 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
    [20] 张宗燧. 在经典电动力学中纵场的消除.  , 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
计量
  • 文章访问数:  7324
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-16
  • 修回日期:  2016-05-05
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map