Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics investigation of shock front in nanocrystalline copper

Ma Wen Lu Yan-Wen

Citation:

Molecular dynamics investigation of shock front in nanocrystalline copper

Ma Wen, Lu Yan-Wen
cstr: 32037.14.aps.62.036201
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The elasto-plastic deformation behavior, yield strength and strain rate of material under shock compression can be represented by shock front, and the shock front is also related to the variation of strength after shock compression. In this paper, we study the dynamic plastic deformation processe of nanocrystalline copper under shock compression through molecular dynamics simulations. We also explore the dependences of the shock front and the mechanism of elasto-plastic deformation on grain boundary, and make a comparison with the case of the shock response of nanocrystalline aluminum. This investigation shows that the contribution of grain boundary to the shock-front width of nanocrystalline copper are smaller than that of nanocrystalline aluminum. The plastic mechanism of nanocrystalline copper is dominated by the emission and propagation of partial dislocations, and the full dislocation and deformation twin are rarely found in the samples. From the simulations are also found that the shock-front width decreases with the increase of loaded shock stress. A quantitative inverse relationship between the shock wave front width and the shock intensity is obtained. This quantitative inverse relationship is close to other simulation result of nanocrystalline copper and quite different from results of coarse-grained copper compression experiments.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202238, 11102194) and the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C6702011104).
    [1]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John Wiley Sons, Inc.)

    [2]
    [3]

    Jones O E, Mote J D 1969 J. Appl. Phys. 40 4920

    [4]

    Asay J R, Chhabildas L C 2003 in ed. Horie Y, Davison L, Thadhani N N High-Pressure Shock Compression of Solids VI (New York: Springer)

    [5]
    [6]

    Holian B L 2004 Shock Waves 13 489

    [7]
    [8]

    Holian B L, Lomdahl P S 1998 Science 280 2085

    [9]
    [10]

    Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 5351

    [11]
    [12]
    [13]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [14]

    Cao B, Bringa E M, Meyers M A 2007 Metall. Mater. Trans. A 38A 2681

    [15]
    [16]

    Jarmakani H, Bringa E, Erhart P, Remington B, Wang Y, Vo N, Meyers M 2008 Acta Mater. 56 5584

    [17]
    [18]
    [19]

    Bringa E M, Caro A, Victoria M, Park N 2005 JOM 57 67

    [20]

    Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X 2004 Science 304 654

    [21]
    [22]
    [23]

    Van Swygenhoven H, Derlet P M 2008 in ed. Hirth J P Dislocations in Solids (Amsterdam: Elsevier B. V.)

    [24]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225 (in Chinese) [陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦 2010 59 1225]

    [25]
    [26]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 经福谦 2011 60 016107]

    [27]
    [28]
    [29]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [30]
    [31]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [32]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [33]
    [34]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4767 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 58 4772]

    [35]
    [36]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 59 4781]

    [37]
    [38]
    [39]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [40]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [41]
    [42]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良, 祝文军, 贺红亮, 伍登学, 经福谦 2006 55 4767]

    [43]
    [44]
    [45]

    Marsh P S 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [46]
    [47]
    [48]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [49]
    [50]

    Schiotz J, Jacobsen K W 2003 Science 301 1357

    [51]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [52]
    [53]
    [54]

    Grady D E 1981 Appl. Phys. Lett. 38 825

    [55]
    [56]

    Swegle J W, Grady D E 1985 J. Appl. Phys. 58 692

    [57]

    Grady D E 2010 J. Appl. Phys. 107 013506

    [58]
    [59]
  • [1]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John Wiley Sons, Inc.)

    [2]
    [3]

    Jones O E, Mote J D 1969 J. Appl. Phys. 40 4920

    [4]

    Asay J R, Chhabildas L C 2003 in ed. Horie Y, Davison L, Thadhani N N High-Pressure Shock Compression of Solids VI (New York: Springer)

    [5]
    [6]

    Holian B L 2004 Shock Waves 13 489

    [7]
    [8]

    Holian B L, Lomdahl P S 1998 Science 280 2085

    [9]
    [10]

    Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 5351

    [11]
    [12]
    [13]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [14]

    Cao B, Bringa E M, Meyers M A 2007 Metall. Mater. Trans. A 38A 2681

    [15]
    [16]

    Jarmakani H, Bringa E, Erhart P, Remington B, Wang Y, Vo N, Meyers M 2008 Acta Mater. 56 5584

    [17]
    [18]
    [19]

    Bringa E M, Caro A, Victoria M, Park N 2005 JOM 57 67

    [20]

    Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X 2004 Science 304 654

    [21]
    [22]
    [23]

    Van Swygenhoven H, Derlet P M 2008 in ed. Hirth J P Dislocations in Solids (Amsterdam: Elsevier B. V.)

    [24]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225 (in Chinese) [陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦 2010 59 1225]

    [25]
    [26]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 经福谦 2011 60 016107]

    [27]
    [28]
    [29]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [30]
    [31]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [32]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [33]
    [34]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4767 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 58 4772]

    [35]
    [36]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 59 4781]

    [37]
    [38]
    [39]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [40]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [41]
    [42]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良, 祝文军, 贺红亮, 伍登学, 经福谦 2006 55 4767]

    [43]
    [44]
    [45]

    Marsh P S 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [46]
    [47]
    [48]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [49]
    [50]

    Schiotz J, Jacobsen K W 2003 Science 301 1357

    [51]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [52]
    [53]
    [54]

    Grady D E 1981 Appl. Phys. Lett. 38 825

    [55]
    [56]

    Swegle J W, Grady D E 1985 J. Appl. Phys. 58 692

    [57]

    Grady D E 2010 J. Appl. Phys. 107 013506

    [58]
    [59]
  • [1] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [2] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [3] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] Song Xu, Lu Yong-Jun, Shi Ming-Liang, Zhao Xiang, Wang Feng-Hui. Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium-ion battery electrode. Acta Physica Sinica, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [5] Diwu Min-Jie, Hu Xiao-Mian. Plastic deformation in nanoporous aluminum subjected to high-rate uniaxial compression. Acta Physica Sinica, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [6] Wen Peng, Tao Gang, Ren Bao-Xiang, Pei Zheng. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Acta Physica Sinica, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [7] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [8] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [9] Xu Shuang, Guo Ya-Fang. Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics. Acta Physica Sinica, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [10] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [11] He An-Min, Shao Jian-Li, Wang Pei, Qin Cheng-Sen. Plastic deformation of single-crystalline copper films with surface orientation [001] : molecular dynamics simulations. Acta Physica Sinica, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [12] Ma Xiao-Juan, Liu Fu-Sheng, Li Yi-Lei, Zhang Ming-Jian, Li Yong-Hong, Sun Yan-Yun, Peng Xiao-Juan, Jing Fu-Qian. Quantitative relation between the viscosity coefficient of substances under shock compression and the disturbance damping of shock front. Acta Physica Sinica, 2010, 59(7): 4761-4766. doi: 10.7498/aps.59.4761
    [13] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [15] Chen Xian-Miao, Song Shen-Hua. Non-equilibrium grain boundary segregation of phosphorous during high temperature plastic deformation. Acta Physica Sinica, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [16] Yang Qi-Li, Zhang Guang-Cai, Xu Ai-Guo, Zhao Yan-Hong, Li Ying-Jun. Molecular dynamics simulation of shock-induced collapse in single crystal copper with nano-void inclusion. Acta Physica Sinica, 2008, 57(2): 940-946. doi: 10.7498/aps.57.940
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
Metrics
  • Abstract views:  8978
  • PDF Downloads:  711
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2012
  • Accepted Date:  17 August 2012
  • Published Online:  05 February 2013

/

返回文章
返回
Baidu
map