-
To solve the method of measuring the viscosity of related substance at high pressures and high temperatures, Sakharov has proposed an experimental method of small disturbance in shock wave. However, the quantitative relation between the disturbance amplitude damping and viscosity in Sakharov flow field has not been given by theory. In this paper, the propagation of complex flow in Al, the development of relative disturbance amplitude on sinusoidal shock front, and the effect of viscosity on it are studied, and the relation between the relative distance of zero-point on the disturbance amplitude damping curve and viscosity is given. Compared with Zaidel’s uniform flow model and Millers’ nonuniform flow model, our Sakharov flow is close to real experiment. From our numerical analysis method, Sakharov small disturbance experiment can give a credible viscosity coefficient. We analyze the experimental data of Mineev again, and find the effective viscosity coefficient of Al at shock pressure 31 GPa and strain rate 2×106 s-1 should be modified by 1100 Pa·s, which is half of the former analytic result.
-
Keywords:
- viscosity coefficient /
- two-dimensional Eulerian flow /
- shock front /
- sinusoidal disturbance
[1] Hide R 1967 Science 157 3784
[2] Buffett B A 1997 Nature 388 6642
[3] Pyrak-Nolte L J, Myer L R, Cook N G W 1990 J. Geophys. Res. 95 B6
[4] Mineev V N, Funtikov A I 2004 Phys-Usp 47 671
[5] Miller G H and Ahrens T J 1991 Rev. Mod. Phys. 63 919
[6] Sakharov A D, Zaidel R M, Mineev V N 1964 Dokl. Akad. Nauk SSSR 159 1019
[7] Zaidel R M 1967 Prikl. Matem. Tekh. Fiz. 4 30
[8] Mineev V N, Mineev A V 1997 J. Phys.Ⅳ 7 C3-583
[9] Mineev V N, Funtikov A I 2005 High Temp. 43 136
[10] Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖、谭 华、胡建波、戴诚达、陈大年、王焕然 2008 57 2352 ]
[11] Hou R L, Peng J X, Jing F Q 2009 Acta Phys. Sin. 58 6413 (in Chinese)[侯日立、彭建祥、经福谦 2009 58 6413]
[12] Mitchell A C, Nellis W J 1982 J. Chem. Phys. 76 6273
[13] Mader C H 1998 Numerical Modeling of Explosives and Propellants(Florida: CRC Press) p327
[14] Grady D E 1981 Appl. Phys. Lett. 38 825
[15] Chhabilidas L C, Asay J R 1979 J. Appl. Phys. 50 4
[16] Boudet J F, Amarouchene Y, Kellay H 2008 Phys. Rev. Lett. 101 254503
[17] Johnson J N, Baker L M 1969 J. Appl. Phys. 40 4321
-
[1] Hide R 1967 Science 157 3784
[2] Buffett B A 1997 Nature 388 6642
[3] Pyrak-Nolte L J, Myer L R, Cook N G W 1990 J. Geophys. Res. 95 B6
[4] Mineev V N, Funtikov A I 2004 Phys-Usp 47 671
[5] Miller G H and Ahrens T J 1991 Rev. Mod. Phys. 63 919
[6] Sakharov A D, Zaidel R M, Mineev V N 1964 Dokl. Akad. Nauk SSSR 159 1019
[7] Zaidel R M 1967 Prikl. Matem. Tekh. Fiz. 4 30
[8] Mineev V N, Mineev A V 1997 J. Phys.Ⅳ 7 C3-583
[9] Mineev V N, Funtikov A I 2005 High Temp. 43 136
[10] Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖、谭 华、胡建波、戴诚达、陈大年、王焕然 2008 57 2352 ]
[11] Hou R L, Peng J X, Jing F Q 2009 Acta Phys. Sin. 58 6413 (in Chinese)[侯日立、彭建祥、经福谦 2009 58 6413]
[12] Mitchell A C, Nellis W J 1982 J. Chem. Phys. 76 6273
[13] Mader C H 1998 Numerical Modeling of Explosives and Propellants(Florida: CRC Press) p327
[14] Grady D E 1981 Appl. Phys. Lett. 38 825
[15] Chhabilidas L C, Asay J R 1979 J. Appl. Phys. 50 4
[16] Boudet J F, Amarouchene Y, Kellay H 2008 Phys. Rev. Lett. 101 254503
[17] Johnson J N, Baker L M 1969 J. Appl. Phys. 40 4321
Catalog
Metrics
- Abstract views: 8281
- PDF Downloads: 681
- Cited By: 0