Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Breakdown vovtage analysis of new AlGaN/GaN high electron mobility transistor with the partial fixed charge in Si3N4 layer

Duan Bao-Xing Yang Yin-Tang Kevin J. Chen

Citation:

Breakdown vovtage analysis of new AlGaN/GaN high electron mobility transistor with the partial fixed charge in Si3N4 layer

Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to optimize the surface electric field of the traditional AlGaN/GaN high electron mobility transistor and improve the breakdown voltage and reliability, a new AlGaN/GaN high electron mobility transistor is proposed with the partial fixed positive charges in the Si3N4 passivation layer in this paper. The partial fixed positive charges of the Si3N4 passivation layer do not affect the polarization effect of the AlGaN/GaN heterojunction. The surface electric field tends to the uniform distribution due to the new electric field peak formed by the partial fixed positive charges, which modulates the surface electric field by applying the electric field modulation effect. The high electric fields near the gate and drain electrode decrease due to the new electric field peak. The breakdown voltage is improved from the 296V for the traditional structure to the 650V for the new structure proposed. The reliability of the device is improved due to the uniform surface electric field. The effect of the electric field modulation is explained by the horizontal and vertical electric field distribution between the Si3N4 and AlGaN interface, which provides a scientific basis for designing the new structure with the partial fixed positive charges in the Si3N4 layer. Because of the fixed positive charge compensation, the two-dimensional electron gas concentration increases, and the on-resistance decreases. So, the output current of the new structure increases compared with that of the traditional AlGaN/GaN High Electron Mobility Transistor.
    • Funds: Project supported by the State Key Program of National Natural Science of China (Grant No. 61234006), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61106076, 61006052).
    [1]

    Chu R M, Zhou Y G, Liu J, Wang D L, Chen K J, Lau K M 2005 IEEE Transactions on Electron Devices 52 438

    [2]

    Anderson T J, Ren F, Covert L, Lin J, Pearton S J, Dalrymple T W, Bozada C, Fitch R C, Moser N, Bedford R G, Schimpf M 2006 J. Electronic Materials 35 675

    [3]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 J. Appl. Phys. 130 093529

    [4]

    Aubry R, Jacquet J C, Dessertenne B, Chartier E, Adam D, Cordier Y, Semond E, Massies J, Diforte M A, Romann A, Delage S L 2003 Eur. Phys. J. AP 22 77

    [5]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [6]

    Shreepad K, Michael S S, Grigory S 2005 Transactions on Electron Devices 52 2534

    [7]

    Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Transactions on Electron Devices 52 106

    [8]

    Duan B X, Yang Y T 2012 Micro & Nano Lett. 7 9

    [9]

    Duan B X, Yang Y T 2012 Sci China Inf. Sci. 55 473

    [10]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201-1

    [11]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [12]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [13]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [14]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [15]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [16]

    Zhang Y F, Singh J 1999 J. Appl. Phys. 85 587

    [17]

    Marso M, Bernat J, Javorka P, Kordos P 2004 Appl. Phys. Lett. 85 2928

    [18]

    Polyakov V M, Schwierz F 2005 J. Appl. Phys. 98 023709

    [19]

    Wang W F, Derluyn J 2006 Japanese J. Appl. Phys. 45 L224

    [20]

    Parvesh G, Sujata P, Subhasis H, Mridula G, Gupta R S 2007 Solid State Electronics 51 130

    [21]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [22]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan S C 2001 Appl. Phys. Lett. 78 757

    [23]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth 251 481

    [24]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese J. Appl. Phys. 45 L220

    [25]

    Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Lett. 10 H46

    [26]

    Duan B X,Yang Y T, Kevin J C 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

  • [1]

    Chu R M, Zhou Y G, Liu J, Wang D L, Chen K J, Lau K M 2005 IEEE Transactions on Electron Devices 52 438

    [2]

    Anderson T J, Ren F, Covert L, Lin J, Pearton S J, Dalrymple T W, Bozada C, Fitch R C, Moser N, Bedford R G, Schimpf M 2006 J. Electronic Materials 35 675

    [3]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 J. Appl. Phys. 130 093529

    [4]

    Aubry R, Jacquet J C, Dessertenne B, Chartier E, Adam D, Cordier Y, Semond E, Massies J, Diforte M A, Romann A, Delage S L 2003 Eur. Phys. J. AP 22 77

    [5]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [6]

    Shreepad K, Michael S S, Grigory S 2005 Transactions on Electron Devices 52 2534

    [7]

    Wataru S, Masahiko K, Yoshiharu T 2005 IEEE Transactions on Electron Devices 52 106

    [8]

    Duan B X, Yang Y T 2012 Micro & Nano Lett. 7 9

    [9]

    Duan B X, Yang Y T 2012 Sci China Inf. Sci. 55 473

    [10]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201-1

    [11]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [12]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [13]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [14]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [15]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [16]

    Zhang Y F, Singh J 1999 J. Appl. Phys. 85 587

    [17]

    Marso M, Bernat J, Javorka P, Kordos P 2004 Appl. Phys. Lett. 85 2928

    [18]

    Polyakov V M, Schwierz F 2005 J. Appl. Phys. 98 023709

    [19]

    Wang W F, Derluyn J 2006 Japanese J. Appl. Phys. 45 L224

    [20]

    Parvesh G, Sujata P, Subhasis H, Mridula G, Gupta R S 2007 Solid State Electronics 51 130

    [21]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [22]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan S C 2001 Appl. Phys. Lett. 78 757

    [23]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth 251 481

    [24]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese J. Appl. Phys. 45 L220

    [25]

    Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D, Wang R 2007 Electrochemical and Solid-State Lett. 10 H46

    [26]

    Duan B X,Yang Y T, Kevin J C 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

  • [1] Wang Shuai, Ge Chen, Xu Zu-Yin, Cheng Ai-Qiang, Chen Dun-Jun. Modeling of temperature effect on DC characteristics of microwave GaN devices. Acta Physica Sinica, 2024, 73(17): 177101. doi: 10.7498/aps.73.20240765
    [2] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [4] Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping. Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [5] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [7] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [8] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang. Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer. Acta Physica Sinica, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [10] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [11] Zhu Yan-Xu, Cao Wei-Wei, Xu Chen, Deng Ye, Zou De-Shu. Effect of different ohmic contact pattern on GaN HEMT electrical properties. Acta Physica Sinica, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [12] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [13] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] Zhang Jin-Cheng, Zheng Peng-Tian, Dong Zuo-Dian, Duan Huan-Tao, Ni Jin-Yu, Zhang Jin-Feng, Hao Yue. The effect of back-barrier layer on the carrier distribution in the AlGaN/GaN double-heterostructure. Acta Physica Sinica, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [16] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] Wang Chong, Quan Si, Zhang Jin-Feng, Hao Yue, Feng Qian, Chen Jun-Feng. Simulation and experimental investigation of recessed-gate AlGaN/GaN HEMT. Acta Physica Sinica, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [18] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [19] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
Metrics
  • Abstract views:  8770
  • PDF Downloads:  968
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2012
  • Accepted Date:  10 July 2012
  • Published Online:  05 December 2012

/

返回文章
返回
Baidu
map