搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究

袁嵩 段宝兴 袁小宁 马建冲 李春来 曹震 郭海军 杨银堂

引用本文:
Citation:

阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究

袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂

Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer

Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang
PDF
导出引用
  • 本文报道了作者提出的阶梯AlGaN外延层新型AlGaN/GaN HEMTs结构的实验结果. 实验利用感应耦合等离子体刻蚀(ICP)刻蚀栅边缘的AlGaN外延层, 形成阶梯的AlGaN 外延层结构, 获得浓度分区的沟道2DEG, 使得阶梯AlGaN外延层边缘出现新的电场峰, 有效降低栅边缘的高峰电场, 从而优化了AlGaN/GaN HEMTs器件的表面电场分布. 实验获得了阈值电压-1.5 V的新型AlGaN/GaN HEMTs器件. 经过测试, 同样面积的器件击穿电压从传统结构的67 V提高到新结构的106 V, 提高了58%左右; 脉冲测试下电流崩塌量也比传统结构减少了30%左右, 电流崩塌效应得到了一定的缓解.
    In this paper, experimental results are reported about the new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with a step AlGaN layer. The rule of 2DEG concentration variation with the thickness of AlGaN epitaxial layer has been applied to the new AlGaN/GaN HEMTs: The step AlGaN layer is formed at the gate edge by inductively coupled plasma etching, the 2DEG concentration in the etched region is much lower than the other parts of the device. A new electric field peak appears at the corner of the step AlGaN layer. The high electric field at the gate edge is decreased effectively due to the emergence of the new electric field peak, and this optimizes the surface electric field of the new AlGaN/GaN HEMTs. The new devices have the same threshold voltage and transconductance as the conventional structure, -1.5 V and 150 mS/mm. That means, the step AlGaN layer does not affect the forward characteristics of the AlGaN/GaN HEMTs. As the more uniform surface electric field distribution usually leads to a higher breakdown voltage (BV), with the same gate to drain length LGD=4 m, the BV can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMTs as compared with the conventional structure. At VGS=1 V, the saturation currents (Isat) is 230 mA/mm for the conventional Al0.25Ga0.75N/GaN HEMT and 220 mA/mm for the partially etched Al0.25Ga0.75N/GaN HEMT (LEtch=4 m, LGD=4 m). The decrease of Isat is at most 10 mA/mm. However, as the BV has a significant enhancement of almost 40 V, these drawbacks are small enough to be acceptable. During the pulse I-V test, the current collapse quantity of the conventional structure is almost 40% of the maximum IDS(DC), but this quantity in the new devices is only about 10%, thus the current collapse effect in Al0.25Ga0.75N/GaN HEMTs has a significant remission for a step AlGaN layer. And as the high electric field peak at the gate edge is decreased, the effect of the gate electrode on electron injection caused by this electric field peak is also included. The injected electrons may increase the leakage current during the off-state, and these injected electrons would form the surface trapped charge as to decrease the 2DEG density at the gate. As a result, the output current and the transconductance would decrease due to the decreased electron density during the on-state. That means, with the region partially etched, the electron injection effect of the gate electrode would be remissed and the stability of Schottky gate electrode would be improved. In addition, due to the decrease of the high electric field at the gate edge, the degradation of the device, which is caused by the high electric field converse piezoelectric effect, will be restrained. The stability of the partially etched AlGaN/GaN HEMT will become better.
      通信作者: 段宝兴, bxduan@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB351906, 2014CB339900)和国家自然科学基金重点项目(批准号: 61234006, 61334002)资助的课题.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2015CB351906, 2014CB339900), and the National Natural Science Foundation of China (Grant Nos. 61234006, 61234006).
    [1]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar S 2012 IEEE Electron Device Lett. 33 1690

    [2]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyaoshi T, Daisuke U 2008 IEEE Transactions on Electron Devices 29 1087

    [3]

    Johnson J. W., Zhang A. P., Luo W B, Fan R, Pearton S. J., Park S. S., Park Y. J., Chyi J I 2003 IEEE Electron. Device Lett. 24 32

    [4]

    Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron Device Lett. 33 212

    [5]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal Appl. Phy.130 093529

    [6]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [7]

    Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron Device Lett. 33 1132

    [8]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys.130 093529

    [9]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171

    [10]

    Lee H S, Daniel P, Sun M, Gao X, Guo S P, Tomas P 2012 IEEE Electron Device Lett. 33 982

    [11]

    Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473

    [12]

    Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9

    [13]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220

    [14]

    Ando Y., Okamoto Y., Miyamoto H., Nakayama T., Inoue T., Kuzuhara M 2003 IEEE Electron Device Lett. 24 289

    [15]

    Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Journal 38 7

    [16]

    Jin D, Joh J, Krishnan S, Tipirneni N, Pendharkar S, del Alamo J A 2013 IEEE International Electron Devices Meeting Washington DC. USA Dec. 9-11, 2013, p 6.2.16.2.4

    [17]

    Injun H, Jongseob K, Soogine C, Hyun-Sik C, Sun-Kyu H, Jaejoon O, Jai Kwang S, U-In C 2013 IEEE Electron Device Lett. 34 12 1494

    [18]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517

    [19]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [20]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377

    [21]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [22]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [23]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [24]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [25]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 247302]

    [26]

    Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [27]

    Di S, Jie L, Zhiqun C, Wilson C. W. T, Kei May L, Kevin J. Chen. 2007 IEEE Electron Device Lett. 28 189

    [28]

    Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808

    [29]

    Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, Den Baars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520

    [30]

    Yifei Z, Smorchkova I P, Elsass C R, Stacia K, Ibbetson J P, Jasprit S 2000 Appl. Phys. Lett.87 7981

    [31]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, SpeckJ S, Mishra U K 2000 Appl. Phys. Lett. 77 250

    [32]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302

    [33]

    DESSIS, ISE TCAD Manuals Release 10., Integrated Systems Engineering, Zurich, Switzerland, 2004

  • [1]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar S 2012 IEEE Electron Device Lett. 33 1690

    [2]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyaoshi T, Daisuke U 2008 IEEE Transactions on Electron Devices 29 1087

    [3]

    Johnson J. W., Zhang A. P., Luo W B, Fan R, Pearton S. J., Park S. S., Park Y. J., Chyi J I 2003 IEEE Electron. Device Lett. 24 32

    [4]

    Huang T D, Zhu X L, Wong K M, Lau K M 2012 IEEE Electron Device Lett. 33 212

    [5]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal Appl. Phy.130 093529

    [6]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [7]

    Zhou C H, Jiang Q M, Huang S, Chen K J 2012 IEEE Electron Device Lett. 33 1132

    [8]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys.130 093529

    [9]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171

    [10]

    Lee H S, Daniel P, Sun M, Gao X, Guo S P, Tomas P 2012 IEEE Electron Device Lett. 33 982

    [11]

    Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473

    [12]

    Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9

    [13]

    Subramaniam A, Takashi E, Lawrence S, Hiroyasu I 2006 Japanese Journal of Applied Physics 45 L220

    [14]

    Ando Y., Okamoto Y., Miyamoto H., Nakayama T., Inoue T., Kuzuhara M 2003 IEEE Electron Device Lett. 24 289

    [15]

    Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Journal 38 7

    [16]

    Jin D, Joh J, Krishnan S, Tipirneni N, Pendharkar S, del Alamo J A 2013 IEEE International Electron Devices Meeting Washington DC. USA Dec. 9-11, 2013, p 6.2.16.2.4

    [17]

    Injun H, Jongseob K, Soogine C, Hyun-Sik C, Sun-Kyu H, Jaejoon O, Jai Kwang S, U-In C 2013 IEEE Electron Device Lett. 34 12 1494

    [18]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517

    [19]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [20]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377

    [21]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [22]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [23]

    Duan B X, Yang Y T 2011 IEEE Transactions on Electron Devices 58 2057

    [24]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [25]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 247302]

    [26]

    Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [27]

    Di S, Jie L, Zhiqun C, Wilson C. W. T, Kei May L, Kevin J. Chen. 2007 IEEE Electron Device Lett. 28 189

    [28]

    Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808

    [29]

    Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, Den Baars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520

    [30]

    Yifei Z, Smorchkova I P, Elsass C R, Stacia K, Ibbetson J P, Jasprit S 2000 Appl. Phys. Lett.87 7981

    [31]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, SpeckJ S, Mishra U K 2000 Appl. Phys. Lett. 77 250

    [32]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302

    [33]

    DESSIS, ISE TCAD Manuals Release 10., Integrated Systems Engineering, Zurich, Switzerland, 2004

  • [1] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术.  , 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [2] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理.  , 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [3] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应.  , 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [4] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS.  , 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [5] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析.  , 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [6] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [7] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析.  , 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [8] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型.  , 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [9] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析.  , 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [10] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究.  , 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [11] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响.  , 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [12] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究.  , 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [13] 李若凡, 杨瑞霞, 武一宾, 张志国, 许娜颖, 马永强. 用逆压电极化模型对AlGaN/GaN 高电子迁移率晶体管电流崩塌现象的研究.  , 2008, 57(4): 2450-2455. doi: 10.7498/aps.57.2450
    [14] 魏 巍, 林若兵, 冯 倩, 郝 跃. 场板结构AlGaN/GaN HEMT的电流崩塌机理.  , 2008, 57(1): 467-471. doi: 10.7498/aps.57.467
    [15] 席光义, 任 凡, 郝智彪, 汪 莱, 李洪涛, 江 洋, 赵 维, 韩彦军, 罗 毅. AlGaN表面坑状缺陷及GaN缓冲层位错缺陷对AlGaN/GaN HEMT电流崩塌效应的影响.  , 2008, 57(11): 7238-7243. doi: 10.7498/aps.57.7238
    [16] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析.  , 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [17] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型.  , 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [18] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型.  , 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [20] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究.  , 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
计量
  • 文章访问数:  5882
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 修回日期:  2015-08-05
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map