-
The typical neutral density filter is a metal film plated on a K9 glass to achieve the effective absorption of laser. Its lower damage threshold severely restricts its application to high energy laser systems. Experimental study on damage morphology and damage mechanism of filter in a higher laser energy density is carried out. The variation characteristics of damage morphology are as follows: with the increase of laser energy density, damage spots first appear on the filter, then develop into cracks, and the cracks grow gradually longer and eventually connect into linear and block forms, resulting in a large area of film dropping off. A model of defect absorption leading to film damage on neutral density filter is established. And temperature and stress distributions on the film surface are calculated, separately. The inhomogeneous temperature rise on film surface leads to radial, hoop and axial thermal stress distributions. Theoretical analysis shows that cracks along the radial direction are caused by hoop stress. When laser energy density is larger than about 2.2 J/cm2, impurity particle radius is larger than 140 nm and the distance between impurity particles is less than 10 m. A large number of cracks can connect together to cause a large area of film to drop off.
-
Keywords:
- neutral density filter /
- impurity particle-induced damage /
- film /
- damage mechanism
[1] Hu H Y, Fan Z X, Luo F 2001 Applied Optics 40 1950
[2] Chang Y H, Liu C C, Yang T J, Wu C J 2009 J. Opt. Soc. Am. B 26 1141
[3] Xia Z L, Fan Z X, Shao J D 2006 Optics Communications 265 620
[4] Xia Z L, Shao J D, Fan Z X 2007 Acta. Phys. Sin. 56 400 (in Chinese) [夏志林, 邵建达, 范正修 2007 56 400]
[5] Hu J P, Zhou Xin, Li S G, Liu Z C , Pan F, Chen S L 2011 Optics Express 19 10625
[6] Wang W P, L¨u B D, Liu C L, Zhang D Y, Luo Y Q 2003 Optics & Laser Technology 35 303
[7] Papernov S, Schmid A W 2005 J. Appl. Phys. 97 114906
[8] Gallais L, Voarino P, Amra C 2004 J. Opt. Soc. Am. B 21 1073
[9] Natoli J Y, Gallais L ,Akhouayri H, Amra C 2002 Applied Optics
[10] Hopper R W, Uhlmann D R 1970 Journal of Applied Physics 41 4023
[11] Hu P, Chen F L 2005 High Power Laser and Particle Beams 17 961 (in Chinese) [胡鹏, 陈发良 2005 强激光与粒子束 17 961]
[12] Xia Z L, Fan Z X, Shao J D 2006 Chinese Journal of Lasers 33 111 (in Chinese) [夏志林, 范正修, 邵建达 2006 中国激光 33 111]
[13] Reichling M, Bodemann A, Kaiser N 1998 Thin Solid Films 320 264
[14] Wang B, Qin Y, Ni X W, Shen Z H, Lu J 2010 Applied Optics 49 5537
[15] Dijon J, Poulingue M, Hue J 1999 Proceedings of SPIE 3578 387
[16] Dijon J, Ravel G, Andre B 1999 Proceedings of SPIE 3578 398
-
[1] Hu H Y, Fan Z X, Luo F 2001 Applied Optics 40 1950
[2] Chang Y H, Liu C C, Yang T J, Wu C J 2009 J. Opt. Soc. Am. B 26 1141
[3] Xia Z L, Fan Z X, Shao J D 2006 Optics Communications 265 620
[4] Xia Z L, Shao J D, Fan Z X 2007 Acta. Phys. Sin. 56 400 (in Chinese) [夏志林, 邵建达, 范正修 2007 56 400]
[5] Hu J P, Zhou Xin, Li S G, Liu Z C , Pan F, Chen S L 2011 Optics Express 19 10625
[6] Wang W P, L¨u B D, Liu C L, Zhang D Y, Luo Y Q 2003 Optics & Laser Technology 35 303
[7] Papernov S, Schmid A W 2005 J. Appl. Phys. 97 114906
[8] Gallais L, Voarino P, Amra C 2004 J. Opt. Soc. Am. B 21 1073
[9] Natoli J Y, Gallais L ,Akhouayri H, Amra C 2002 Applied Optics
[10] Hopper R W, Uhlmann D R 1970 Journal of Applied Physics 41 4023
[11] Hu P, Chen F L 2005 High Power Laser and Particle Beams 17 961 (in Chinese) [胡鹏, 陈发良 2005 强激光与粒子束 17 961]
[12] Xia Z L, Fan Z X, Shao J D 2006 Chinese Journal of Lasers 33 111 (in Chinese) [夏志林, 范正修, 邵建达 2006 中国激光 33 111]
[13] Reichling M, Bodemann A, Kaiser N 1998 Thin Solid Films 320 264
[14] Wang B, Qin Y, Ni X W, Shen Z H, Lu J 2010 Applied Optics 49 5537
[15] Dijon J, Poulingue M, Hue J 1999 Proceedings of SPIE 3578 387
[16] Dijon J, Ravel G, Andre B 1999 Proceedings of SPIE 3578 398
Catalog
Metrics
- Abstract views: 7461
- PDF Downloads: 724
- Cited By: 0